首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this letter, we present a moment generating function (MGF) based performance analysis of generalized selection combining (GSC) receivers operating over independent and identically distributed (i.i.d.) K fading channels. Analytical expressions for the marginal MGF of the signal-to-noise ratio of a single diversity branch for integer plus one-half values of the fading parameter are obtained and used to efficiently evaluate the average error probability of GSC receivers.  相似文献   

2.
Diversity reception over generalized-K (KG) fading channels   总被引:2,自引:0,他引:2  
A detailed performance analysis for the most important diversity receivers operating over a composite fading channel modeled by the generalized-K (Kg) distribution is presented. The Kg distribution has been recently considered as a generic and versatile distribution for the accurate modeling of a great variety of short term fading in conjunction with long term fading (shadowing) channel conditions. For this relatively new composite fading model, expressions for important statistical metrics of maximal ratio combining (MRC), equal gain combining (EGC), selection combining (SC) and switch and stay combining (SSC) diversity receivers are derived. Using these expressions and by considering independent but not necessarily identical distributed fading channel conditions, performance criteria, such as average output signal-to-noise ratio, amount of fading and outage probability are obtained in closed form. Moreover, following the moments generating function (MGF) based approach for MRC and SSC receivers, and the Pade approximants method for SC and EGC receivers, the average bit error probability is studied. The proposed mathematical analysis is complemented by various performance evaluation results which demonstrate the accuracy of the theoretical approach.  相似文献   

3.
The authors propose an efficient moment generating function (MGF)-based method to evaluate the performance of generalized selection combining (GSC) over different fading channels. Employing a recently proposed method which is, however, only applicable to GSC diversity with independent and identically distributed branches, they derive a general MGF expression for the GSC output signal-to-noise ratio (SNR) for generalized fading channels, where the channel statistics in different diversity branches may be nonidentical or even distributed according to different distribution families. The resulting MGF expression is applicable to the analysis of the error probability, the outage probability, and the SNR statistics for GSC in a number of wireless communications scenarios with generalized fading. Numerical examples are presented to illustrate the application of the new analysis.  相似文献   

4.
The generalized selection combining (GSC) scheme that adaptively combines a subset of M strongest paths out of L available diversity paths finds applications in several wideband receivers and broadband wireless communications. In this paper, exact closed‐form expressions for the moment generating function (MGF), the probability density function (PDF) and the cumulative density function (CDF) of the GSC(M, L) output signal‐to‐noise ratio (SNR) in independent and identically distributed (i.i.d) Nakagami‐m fading channels are derived while the fading index is a positive integer. These expressions hold for any M and L and provide a comprehensive framework for performance analysis including the derivation of closed‐form formulas for the average symbol error probability (ASEP) of a broad class of binary and M‐ary modulations, mean combined SNR and the outage probability of GSC(M, L) receiver structures. When the Nakagami‐m fading index is not an integer, the MGF of GSC(M, L) output SNR is derived as an (M − 1)‐fold infinite series. With this MGF, analytical expressions for both the outage probability and error rates can be readily obtained. An easily programmable recursive solution of the MGF of GSC(M, L) output SNR is also outlined for both the positive integer and noninteger fading severity index cases. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
The error performance of generalized selection combining (GSC), which optimally combines the K highest signal-to-noise ratio (SNR) signals out of L total diversity signals, in Nakagami-m fading was recently evaluated using moment generating function (MGF) of the GSC output SNR. However, no single closed-form expression for the MGF exists for arbitrary K and L. In fact, a closed-form expression for the MGF is possible only for an individual combination of K and L. In this letter, a single closed-form expression for approximating the MGF is, therefore, derived and employed in evaluating the approximate error performance. Although the approximation is only applicable for GSC with K being a factor of L, it nonetheless achieves a high degree of accuracy  相似文献   

6.
Generalized selection combining (GSC), in which the best Lc out of L independent diversity channels are linearly combined has been previously proposed and analyzed for Rayleigh fading channels. GSC is a less complex alternative to maximal ratio combining (MRC) that provides a performance gain over traditional selection combining (SC). Both MRC and SC are special cases of CSC, with Lc=L and Lc=1, respectively. We show that CSC also dramatically reduces the impact of switching rate constraints, whereby a selection must be held for the duration of a packet  相似文献   

7.
Using the notion of the “spacing” between ordered exponential random variables, a performance analysis of the generalized selection combining (GSC) diversity scheme over Rayleigh fading channels is presented and compared with that of the conventional maximal-ratio combining and selection combining schemes. Starting with the moment generating function (MGF) of the GSC output signal-to-noise ratio (SNR), we derive closed-form expressions for the average combined SNR, outage probability, and average error probability of a wide variety of modulation schemes operating over independently, identically distributed (i.i.d.) diversity paths. Because of their simple form, these expressions readily allow numerical evaluation for cases of practical interest. The results are also extended to the case of non-i.i.d. diversity paths  相似文献   

8.
The paper examines the impact of Gaussian distributed weighting errors (in the channel gain estimates used for coherent combination) on both the output statistics of a hybrid selection/maximal-ratio (SC/MRC) receiver and the degradation of the average symbol-error rate (ASER) performance as compared with the ideal case. New expressions are derived for the probability density function, cumulative distribution function and moment generating function (MGF) of the coherent hybrid SC/MRC combiner output signal-to-noise ratio (SNR). The MGF is then used to derive exact, closed-form, ASER expressions for binary and M-ary modulations in conjunction a nonideal hybrid SC/MRC receiver in a Rayleigh fading environment. Results for both selection combining (SC) and maximal-ratio combining (MRC) are obtained as limiting cases. Additionally, the effect of the weighting errors on both the outage rate of error probability and the average combined SNR is investigated. These analytical results provide insights into the tradeoff between diversity gain and combination losses, in concert with increasing orders of diversity branches in an energy-sharing communication system  相似文献   

9.
Performance of M-PSK with GSC and EGC with Gaussian weighting errors   总被引:2,自引:0,他引:2  
Using a moment-generating function (MGF)-based approach, we study the performance of M-ary phase-shift keying (M-PSK) with generalized selection combining (GSC) and equal gain combining (EGC) in fading channels (including Rayleigh, Rician, Nakagami-m, and Nakagami-q fading) with independent and identically distributed (i.i.d) branches. Analytical expressions for the error and outage probabilities, the signal-to-noise-ratio (SNR) statistics, and the channel capacity of M-PSK diversity receivers are derived, taking into account the effects of Gaussian weighting errors and all relevant system and channel parameters. Unlike the case of perfect channel-state information (CSI), the outage probability for the case of imperfect channel estimation (ICE) is not only a function of the normalized SNR with respect to the SNR threshold, but also a function of the operating SNR itself. The SNR loss of the M-PSK GSC and EGC receivers due to ICE and the relation between the receiver input and output SNRs for ICE are derived. Our results show that, even with ICE, GSC and EGC are effective in improving the output SNR and significantly reduce the error floor and the channel-capacity loss caused by ICE.  相似文献   

10.
In W-CDMA, soft handover is supported at cell boundaries to maintain communication quality. The maximal ratio combining (MRC) and generalized selection combining (GSC) , are two possible approaches. However, soft handover is resource-intensive. In this letter, we propose an adaptive selection combining (ASC) scheme that can switch flexibly between MRC and GSC so as to take care of both channel loading and communication quality. The signal-to-interference-and-noise ratio (SINR) is kept as high as that of MRC while the blocking probability can remain at about the same level as that of GSC.  相似文献   

11.
Generalized selection combining (GSC) is one of the most widely investigated low-complexity diversity techniques. Recently, output-threshold GSC (OT-GSC) was proposed as a power-saving variant of traditional GSC scheme. In this paper, we present an exact performance analysis of OT-GSC over Rayleigh fading channels. In particular, we derive the cumulative distribution function (CDF), probability density function (PDF) and moment generation function (MGF) of the combined SNR with OT-GSC. Then, we apply these results to study the outage probability and average error rate performance of OT-GSC. This analysis allows for a thorough and accurate comparison of OT-GSC with other variants of GSC, such as minimum selection GSC.  相似文献   

12.
An exact performance analysis of triple-branch threshold-based hybrid selection/maximal-ratio combining (T-HS/MRC) receivers over correlated Nakagami-m fading channels is presented. Our analysis is valid for integer-order fading parameters and an arbitrary covariance matrix. Following the moment-generating function-based approach, the error rate performance of T-HS/MRC receivers for various modulation formats is analytically obtained. Various performance evaluation results are also presented and compared to equivalent simulation ones.  相似文献   

13.
The statistical characteristics of the trivariate and quadrivariate Weibull fading distribution with arbitrary correlation, non-identical fading parameters and average powers are analytically studied. Novel expressions for important joint statistics are derived using the Weibull power transformation. These expressions are used to evaluate the performance of selection combining (SC) and maximal ratio combining (MRC) diversity receivers in the presence of such fading channels.  相似文献   

14.
We study the performance of L-branch equal-gain combining (EGC) and maximal-ratio combining (MRC) receivers operating over nonidentical Weibull-fading channels. Closed-form expressions are derived for the moments of the signal-to-noise ratio (SNR) at the output of the combiner and significant performance criteria, for both independent and correlative fading, such as average output SNR, amount of fading and spectral efficiency at the low power regime, are studied. We also evaluate the outage and the average symbol error probability (ASEP) for several coherent and noncoherent modulation schemes, using a closed-form expression for the moment-generating function (mgf) of the output SNR for MRC receivers and the Pade/spl acute/ approximation to the mgf for EGC receivers. The ASEP of dual-branch EGC and MRC receivers is also obtained in correlative fading. The proposed mathematical analysis is complimented by various numerical results, which point out the effects of fading severity and correlation on the overall system performance. Computer simulations are also performed to verify the validity and the accuracy of the proposed theoretical approach.  相似文献   

15.
A performance analysis of two hybrid selective combining/maximal ratio combining (SC/MRC) diversity receivers over Nakagami-m (1960) fading channels with a flat multipath intensity profile is presented and numerically compared with that of the conventional SC and MRC schemes. Numerical results for particular cases of interest show that the bit error rate (BER) degradation arising from the use of hybrid SC/MRC instead of MRC is independent of the average signal-to-noise ratio (SNR) regardless of the severity of the fading and that MRC provides a higher rate of improvement than the hybrid SC/MRC as the severity of fading decreases  相似文献   

16.
Performance analysis of predetection EGC receiver in Weibull fading channel   总被引:2,自引:0,他引:2  
The predetection equal gain combining (EGC) receiver is generally known to have a performance that is close to the maximal ratio combining (MRC) receiver while having relatively less implementation complexity. The bit error rate (BER) of an EGC receiver for binary, coherent and noncoherent modulations has been analysed for an independent Weibull fading channel. Numerical results have been compared with the available results for selection combining (SC) and MRC diversity receivers.  相似文献   

17.
该文提出了turbo码在最大比合并分集接收无线通信系统中纠错性能的联合上界。基于误差积分函数的简化计算式,推导了分集接收的多路信道分别具有不同衰落特性时,成对差错概率的精确表达式。以瑞利衰落信道为例,对采用turbo码的分集接收无线系统的性能进行了数值计算和仿真。结果表明:turbo码纠错性能联合上界数值计算式与仿真结果一致,可普遍用于信道衰落统计特性各不相同的分集接收系统。  相似文献   

18.
In this letter, we evaluate the performance of the dual-branch maximal ratio combining (MRC) diversity scheme in nonidentical correlated Weibull fading channels with arbitrary parameters. We first use the Pade/spl acute/ approximation (PA) to find closed-form rational expressions for the moment generating function (MGF) of the output signal-to-noise ratio (SNR) of the MRC receiver. Different performance measures, such as the outage probability and the average symbol-error rate for different linear modulations, are then presented using the well-known MGF approach. Furthermore, the effect of the input SNRs unbalancing, the severity of fading, and the degree of correlation on the system performance are also studied. Our results are validated by comparing them with computer simulations, and we show that the PA technique is indeed a convenient tool for such performance evaluation studies.  相似文献   

19.
In this letter, a detailed performance analysis of generalized selection combining GSC(2,3) receivers operating over independent but not necessarily identically distributed (n.i.d.) generalized-K (KG) fading channels is presented. For this class of receivers, a novel closed-form expression for the moments of the output signal-to-noise ratio (SNR) is derived. This result can be afterwards used to evaluate the outage probability and the average symbol error probability of different signal constellations. Various performance evaluation results are also presented and compared to equivalent simulation ones.  相似文献   

20.
为解决采用最小均方误差(MMSE)信道预测的发射天线选择(TASP)/接收天线最大比合并(MRC)的无线通信系统设计问题,利用抛物柱面函数以及高斯Q函数的近似表达式和矩生成函数(MGF)法,分别推导了瑞利块衰落信道上采用TASP/MRC天线分集的相干检测M进制正交和双正交信号的平均误符号率(ASER)精确表达式以及正交信号ASER的近似表达式.数值计算和仿真结果验证了采用TASP/MRC和相干检测的正交/双正交ASER精确表达式的正确性以及正交信号ASER近似表达式的准确性.上述M进制正交/双正交信号ASER精确或近似表达式,可用于设计采用相干检测M进制正交和双正交信号的TASP/MRC天线分集系统,并能够快速地确定收发天线数和信道预测器级数等参数,避免耗时的计算机仿真.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号