共查询到19条相似文献,搜索用时 93 毫秒
1.
针对传统Slope One算法在相似性计算时未考虑项目属性信息和时间因素对项目相似性计算的影响,以及推荐在当前大数据背景下面临的计算复杂度高、处理速度慢的问题,提出了一种基于聚类和Spark框架的加权Slope One算法。首先,将时间权重加入到传统的项目评分相似性计算中,并引入项目属性相似性生成项目综合相似度;然后,结合Canopy-K-means聚类算法生成最近邻居集;最后,利用Spark计算框架对数据进行分区迭代计算,实现该算法的并行化。实验结果表明,基于Spark框架的改进算法与传统Slope One算法、基于用户相似性的加权Slope One算法相比,评分预测准确性更高,较Hadoop平台下的运行效率平均可提高3.5~5倍,更适合应用于大规模数据集的推荐。 相似文献
2.
针对因Slope One算法没有考虑相似性,而导致个性化推荐准确率不高的问题,提出了一种基于用户相似性的加权Slope One算法(BUS Weighted Slope One算法),通过先评定用户活跃度,筛选出活跃用户,然后依据项目间相似性对部分未评分项目进行预测填充,再利用用户间的相似性得到用户的最近邻居集合,将用户间的相似性作为预测评分权重,最后根据最近邻居集合对样本进行预测分析。通过三组实验研究结果表明,与其他传统方法相比,本文提出的方法同时提高了评分预测的准确性和计算效率。 相似文献
3.
Slope One算法基于简单的线性回归模型,通过减少响应时间和维护难度,显著提高了推荐性能。然而Slope One算法没有考虑用户内部的关联,同等地使用各个用户数据进行预测,容易造成偏差,影响推荐质量。本文提出了一种改进的Slope One算法,它将用户相似度纳入考虑并且对评分偏差计算公式进行了修正。基于项目的 Slope One算法结合基于用户的协同过滤算法,提出新的混合推荐算法US-Slope One。在Movie Lens数据集上的实验结果表明,该算法与原Slope One算法相比具有更好的预测准确度和推荐质量。 相似文献
4.
谢虹铭朱参世朱军侯礼灏 《电脑编程技巧与维护》2023,(7):26-28
协同过滤算法可根据用户的偏好,预测其感兴趣的项目,这项技术是目前商业领域中应用较为广泛且成功的。过去,使用协同过滤算法会因其数据的稀疏性及使用K-Means算法聚类时需要预先确定聚类个数等问题影响协同过滤算法的准确性。针对上述问题,提出了一种多聚类融合的协同过滤推荐算法。首先,构建用户-项目评分矩阵;其次,根据用户兴趣、偏好矩阵查找待估值项所对应的近邻用户,随后使用Slope One算法在对每一个簇内的稀疏矩阵进行填充,从而缓解数据稀疏性问题;再次,使用Canopy聚类算法进行粗聚类,将计算出的每个中心点作为K-Means算法的初始聚类点并进行K-Means细聚类;最后,优化后的协同过滤算法最终被用来预测每个簇中填充后的评分矩阵,并采用带时间加权的相似度公式。最终实验数据显示,优化后能够有效提升算法的效率与推荐质量。 相似文献
5.
针对多项式有限混合模型参数估计过程中存在的初始化依赖、参数易收敛到边界值以及容易陷入局部最优等问题,引入了最小信息长度准则,优化多项式有限混合模型的参数估计过程。在此基础上,采用基于多项式有限混合模型的聚类算法对用户评分行为进行聚类,利用模型求解得到的聚类归属概率对Slope One算法实施改进。实验结果表明:应用最小信息长度准则对多项式有限混合模型进行优化后,聚类效果明显提高;同时,相比于基于用户聚类的Slope One推荐算法,改进算法具有明显的改进效果。 相似文献
6.
7.
8.
杨凌云 《数字社区&智能家居》2015,(4):79-81
Slope One算法是一种易实现,运算效率高,可扩展性好的协同过滤推荐算法,但该算法依赖大量用户对待预测项目的评分,在数据稀疏的情况下用户评分的可靠性对推荐结果的影响很大。该文首先利用Lens Kit工具下的Slope One算法和某在线图书网站的数据进行了图书推荐实验,分析了三个导致图书推荐效果不好的原因,然后提出了稀疏数据下的基于预测评分可靠性加权的Slope One算法优化,最后对优化后的推荐算法进行对比实验,证明改进后的图书推荐系统在内存使用率和推荐质量上均有明显提高。 相似文献
9.
10.
Slope One算法就是一种基于项目的协同过滤推荐算法,它对项目属性内和属性间依赖耦合关系的考虑较为欠缺,推荐效果并不理想。基于此,本文提出一种基于耦合关系的加权Slope One算法。该算法构造了项目属性耦合关系模型和用户属性耦合关系模型,采取用户耦合相似度和项目耦合相似度对加权Slope One算法进行改进。本算法在Movielens数据集上进行验证表明具有较高的推荐准确度。 相似文献
11.
针对原始Slope One算法计算推荐预测值时忽略了项目之间的相似性,以及大数据时代下推荐效率低下的问题,提出基于Spark平台的聚类加权Slope One推荐算法。通过Canopy-K-medoids聚类算法生成最近邻居集合;在最近邻集中用Slope One算法上加权项目之间的相似性进行推荐预测;在Spark平台上实现并行化。通过在电影数据集上的实验得出,基于Spark平台的优化算法与传统Slope One算法、加权项目相似度的Slope One算法相比,提高了推荐精度。 相似文献
12.
传统协同过滤算法存在严重的数据稀疏和冷启动问题。利用社交网络中的丰富信息为解决传统协同过滤算法的数据稀疏和冷启动带来了契机。然而,传统基于社交网络的协同过滤算法仅利用粗粒度、稀疏的用户信任关系来改进传统协同过滤算法,即用0或1表示用户之间信任程度。另外,传统基于社交网络推荐算法仅仅集成用户之间显式信任关系,而忽略用户之间隐式的信任关系。本文提出一种基于图嵌入模型的协同过滤推荐算法,即利用图嵌入模型技术学习社交网络中用户的低维特征表示,并根据用户的低维特征表示推导用户之间细粒度的信任关系。最后,根据信任用户和相似用户对目标物品的评分权重预测用户对目标物品的评分。在真实数据集上的实验结果表明,基于图嵌入模型的协同过滤算法的性能优于传统的协同过滤算法。 相似文献
13.
融入权重信息的加权链路预测算法大都具有更好的预测效果,现有的大多数加权算法都是基于外部权重信息,基于网络拓扑结构权重的研究较少.针对此问题,提出一种利用无权网络的结构特征生成结构权重的加权链路预测算法.首先计算资源分配指标得到网络局部结构相似性,再利用DeepWalk算法学习网络结构特征生成节点向量得到余弦相似性,将2... 相似文献
14.
15.
实体对齐旨在找到位于不同知识图谱中的等效实体,是实现知识融合的重要步骤.当前主流的方法是基于图神经网络的实体对齐方法,这些方法往往过于依赖图的结构信息,导致在特定图结构上训练得到的模型不能拓展应用于其他图结构中.同时,大多数方法未能充分利用辅助信息,例如属性信息.为此,本文提出了一种基于图注意力网络和属性嵌入的实体对齐方法,该方法使用图注意力网络对不同的知识图谱进行编码,引入注意力机制从实体应用到属性,在对齐阶段将结构嵌入和属性嵌入进行结合实现实体对齐效果的提升.在现实世界的3个真实数据集上对本文模型进行了验证,实验结果表明提出的方法在很大程度上优于基准的实体对齐方法. 相似文献
16.
随着用户项目数量的增长,用户项目矩阵变得越来越稀疏,使用基于最小生成树的k-means算法对项目进行聚类并以聚类结果对用户评分矩阵进行预测填充。考虑到Slope One算法存在用户兴趣变化问题,将时间权重加入Slope One算法中进行评分预测。将改进后的算法在Movie Lens数据集上进行验证,结果表明,改进后的算法可有效解决稀疏性问题和用户兴趣变化问题,并将MAE值降低到0.015以下。 相似文献
17.
TransC是一种高效的知识图谱嵌入方法,通过区分概念和实例来建立概念、实例及关系的嵌入。TransC将概念编码为球体,球体半径被随机初始化并在训练中迭代更新。由此导致模型出现两个问题:一是训练得到的部分球体半径与模型训练目标不符;二是忽略了概念本身提供的语义信息。针对上述两个问题,该文提出了TransIC模型,首先,基于IC参数给出新的概念球体半径求解方法,使求得的半径满足TransC目标,并且丰富了概念嵌入向量的语义信息。其次,该模型以TransC为基础,在概念编码阶段引入基于IC参数的概念球体半径。最后,在公开的数据集YAGO39K上完成链接预测和三元组分类两个任务,并将该文方法实验所得性能与TransC及其他模型的性能进行对比。结果表明,TransIC在多数指标上均取得显著提升。 相似文献
18.
面对海量的在线学习资源,学习者往往面临“信息过载”和“信息迷航”等问题,帮助学习者高效准确地获取适合自己的学习资源来提升学习效果,已成为研究热点.针对现有方法存在的可解释性差、推荐效率和准确度不足等问题,提出了一种基于知识图谱和图嵌入的个性化学习资源推荐方法,它基于在线学习通用本体模型构建在线学习环境知识图谱,利用图嵌入算法对知识图谱进行训练,以优化学习资源推荐中的图计算效率.基于学习者的学习风格特征进行聚类来优化学习者的资源兴趣度,以获得排序后的学习资源推荐结果.实验结果表明,相对于现有方法,所提方法能在大规模图数据场景下显著提升计算效率和个性化学习资源推荐的准确度. 相似文献
19.
图分析用于深入挖掘图数据的内在特征,然而图作为非欧几里德数据,传统的数据分析方法普遍存在较高的计算量和空间开销。图嵌入是一种解决图分析问题的有效方法,其将原始图数据转换到低维空间并保留关键信息,从而提升节点分类、链接预测、节点聚类等下游任务的性能。与以往的研究不同,同时对静态图和动态图嵌入文献进行全面回顾,提出一种静态图嵌入和动态图嵌入通用分类方法,即基于矩阵分解的图嵌入、基于随机游走的图嵌入、基于自编码器的图嵌入、基于图神经网络(GNN)的图嵌入和基于其他方法的图嵌入。其次,对静态图和动态图方法的理论相关性进行分析,对模型核心策略、下游任务和数据集进行全面总结。最后,提出了四个图嵌入的潜在研究方向。 相似文献