首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
传统的K-means算法选取初始聚类中心时的不确定性会导致聚类结果不稳定。论文提出了基于相异度的邻域及其结构系数的概念,从最小的结构系数开始,按照其递增顺序寻找初始聚类中心;随后采用依次缩小邻域的技巧逐步探索,直到找到K个初始聚类中心。该方法同时得到li(i=0,1,2,…,q)个初始聚类中心及其对应的数据分类结果。实验证明,对比于以往的算法,新算法具有更高的分类准确率以及更少的迭代次数。  相似文献   

2.
一种基于SOM和K-means的文档聚类算法   总被引:9,自引:0,他引:9  
提出了一种把自组织特征映射SOM和K-means算法结合的聚类组合算法。先用SOM对文档聚类,然后以SOM的输出权值初始化K-means的聚类中心,再用K—means算法对文档聚类。实验结果表明,该聚类组合算法能改进文档聚类的性能。  相似文献   

3.
传统的K-means算法随机选取初始聚类中心,聚类结果不稳定,容易陷入局部最优解。针对聚类中心的敏感性,提出一种优化初始聚类中心的K-means算法。此算法利用数据集样本的分布特征计算样本点的密度并进行分类,在高密度区域中选择K个密度最大且相互距离超过某特定阈值的点作为初始聚类中心,并对低密度区域的噪声点单独处理。实验证明,优化后的算法能取得更好的聚类效果,且稳定性增强。  相似文献   

4.
王娟 《微型机与应用》2011,30(20):71-73,76
传统K-means算法对初始聚类中心的选取和样本的输入顺序非常敏感,容易陷入局部最优。针对上述问题,提出了一种基于遗传算法的K-means聚类算法GKA,将K-means算法的局部寻优能力与遗传算法的全局寻优能力相结合,通过多次选择、交叉、变异的遗传操作,最终得到最优的聚类数和初始质心集,克服了传统K-means算法的局部性和对初始聚类中心的敏感性。  相似文献   

5.
孙秀娟  刘希玉 《计算机应用》2008,28(12):3244-3247
在K-means算法中,聚类数k是影响聚类质量的关键因素之一。目前,已经提出了许多确定最佳k值的聚类有效性方法,但这些方法都不能很好地处理两种数据集:类(簇)密度不同的数据集和类间距比较小的数据集(含有合并簇的数据集)。为此,提出了一种新的聚类有效性函数,该函数定义为数据特征轴总长度的平方与最小类间距的比值,最佳聚类数为这个比值达到最小时对应的k值。同时,为减小K-means算法对噪声和孤立点数据的敏感性,使用了基于加权的改进K-平均的方法计算类中心。实验证明,与其他算法相比,基于新聚类有效性函数的K-wmeans算法不仅降低了噪声和孤立点数据对聚类结果的影响,而且能有效地处理上面提到的两种数据集,明显提高了数据聚类质量。  相似文献   

6.
K-means算法的聚类效果与初始聚类中心的选择以及数据中的孤立点有很大关联,具有很强的不确定性.针对这个缺点,提出了一种优化初始聚类中心选择的K-means算法.该算法考虑数据集的分布情况,将样本点分为孤立点、低密度点和核心点,之后剔除孤立点与低密度点,在核心点中选取初始聚类中心,孤立点不参与聚类过程中各类样本均值的...  相似文献   

7.
K-means算法是数据挖掘中非常经典的算法。通过数据之间内在关联性将同类数据组合在一起,这对于大量混乱的数据进行资源整合具有非常重要的意义。就K-means聚类算法在文本处理领域的应用展开研究,分析在文本聚类过程中数据的处理流程,涉及文本中特征项的选取、文本的预处理操作、文本的结构化表示和文本之间相似度计算等步骤。  相似文献   

8.
求解K-means聚类更有效的算法   总被引:1,自引:0,他引:1  
聚类分析是数据挖掘及机器学习领域内的重点问题之一.K-means聚类由于其简羊买用,在聚类划分中是应用最广泛的一种方案.提出了在传统的K-means算法中初始点选取的新方案,对于K-means收敛计算时利用三角不等式,提出了加速收敛过程的改进方案.实验结果表明,改进后的新方法相对于传统K-means聚类所求的结果有较好的聚类划分.  相似文献   

9.
基于改进Harris算法的角点检测   总被引:1,自引:0,他引:1  
提出了一种改进的Harris角点检测方法.该方法在Harris角点检测求得角点响应函数后,利用双掩膜来定义进行非极大值抑制的局部范围,结合K均值聚类方法进行非极大值抑制,若像素点的角点响应函数值满足预设角点判定条件,则将该像素点定义为角点.实验结果表明,该方法无需进行阈值选择,提高了角点检测精度.  相似文献   

10.
邵伦  周新志  赵成萍  张旭 《计算机应用》2018,38(10):2850-2855
K-means算法是被广泛使用的一种聚类算法,传统的K-means算法中初始聚类中心的选择具有随机性,易使算法陷入局部最优,聚类结果不稳定。针对此问题,引入多维网格空间的思想,首先将样本集映射到一个虚拟的多维网格空间结构中,然后从中搜索出包含样本数最多且距离较远的子网格作为初始聚类中心网格,最后计算出各初始聚类中心网格中所包含样本的均值点来作为初始聚类中心。此法选择出来的初始聚类中心与实际聚类中心拟合度高,进而可据此初始聚类中心稳定高效地得到最终的聚类结果。通过使用计算机模拟数据集和UCI机器学习数据集进行测试,结果表明改进算法的迭代次数和错误率比较稳定,且均小于传统K-means算法测试结果的平均值,能有效避免陷入局部最优,并且聚类结果稳定。  相似文献   

11.
优化初始聚类中心的K-means聚类算法   总被引:1,自引:0,他引:1       下载免费PDF全文
针对传统K-means算法对初始中心十分敏感,聚类结果不稳定问题,提出了一种改进K-means聚类算法。该算法首先计算样本间的距离,根据样本距离找出距离最近的两点形成集合,根据点与集合的计算公式找出其他所有离集合最近的点,直到集合内数据数目大于或等于[α]([α]为样本集数据点数目与聚类的簇类数目的比值),再把该集合从样本集中删除,重复以上步骤得到K(K为簇类数目)个集合,计算每个集合的均值作为初始中心,并根据K-means算法得到最终的聚类结果。在Wine、Hayes-Roth、Iris、Tae、Heart-stalog、Ionosphere、Haberman数据集中,改进算法比传统K-means、K-means++算法的聚类结果更稳定;在Wine、Iris、Tae数据集中,比最小方差优化初始聚类中心的K-means算法聚类准确率更高,且在7组数据集中改进算法得到的轮廓系数和F1值最大。对于密度差异较大数据集,聚类结果比传统K-means、K-means++算法更稳定,更准确,且比最小方差优化初始聚类中心的K-means算法更高效。  相似文献   

12.
由于缺少数据分布、参数和数据类别标记的先验信息,部分基聚类的正确性无法保证,进而影响聚类融合的性能;而且不同基聚类决策对于聚类融合的贡献程度不同,同等对待基聚类决策,将影响聚类融合结果的提升。为解决此问题,提出了基于随机取样的选择性K-means聚类融合算法(RS-KMCE)。该算法中的随机取样策略可以避免基聚类决策选取陷入局部极小,而且依据多样性和正确性定义的综合评价值,有利于算法快速收敛到较优的基聚类子集,提升融合性能。通过2个仿真数据库和4个UCI数据库的实验结果显示:RS-KMCE的聚类性能优于K-means算法、K-means融合算法(KMCE)以及基于Bagging的选择性K-means聚类融合(BA-KMCE)。  相似文献   

13.
随着数据量的不断增加,传统的数据处理方法已经无法满足现代大数据处理的需求。近年来,云计算作为一种新型的数据处理方法逐渐被广泛采用。在云计算背景下,K-means聚类算法是一个重要的数据挖掘工具,拥有广泛的应用场景,包括图像处理、文本分析等。但是,当数据量大到一定程度时,传统的K-means聚类算法存在计算效率低和内存占用过大的问题。文章介绍了一种基于云计算的并行K-means聚类算法设计方案,介绍了云计算的概念、云平台技术的应用、云计算平台对并行计算的支持。实验结果表明,K-means算法在处理大规模数据集时的运行时间较长,而采用云计算平台进行并行化计算可以有效提高算法的运行效率。  相似文献   

14.
一种改进K-means算法的聚类算法CARDBK   总被引:1,自引:0,他引:1  
CARDBK聚类算法与批K-means算法的不同之处在于,每个点不是只归属于一个簇,而是同时影响多个簇的质心值,一个点影响某一个簇的质心值的程度取决于该点与其它离该点更近的簇的质心之间的距离值。 从聚类结果的熵、纯度、F1值、Rand Index和NMI等5个性能指标值来看,与多个不同算法在多个不同数据集上分别聚类相比, 该算法具有较好的聚类结果;与多个不同算法在同一数据集上很多不同的初始化条件下分别聚类相比,该算法具有较好且稳定的聚类结果;该算法在不同大小数据集上聚类时具有线性伸缩性且速度较快。  相似文献   

15.
16.
基于多示例的K-means聚类学习算法   总被引:1,自引:1,他引:0       下载免费PDF全文
谢红薇  李晓亮 《计算机工程》2009,35(22):179-181
多示例学习是继监督学习、非监督学习、强化学习后的又一机器学习框架。将多示例学习和非监督学习结合起来,在传统非监督聚类算法K-means的基础上提出MIK-means算法,该算法利用混合Hausdorff距离作为相似测度来实现数据聚类。实验表明,该方法能够有效揭示多示例数据集的内在结构,与K-means算法相比具有更好的聚类效果。  相似文献   

17.
K-means算法最佳聚类数确定方法   总被引:10,自引:0,他引:10  
K-means聚类算法是以确定的类数k为前提对数据集进行聚类的,通常聚类数事先无法确定。从样本几何结构的角度设计了一种新的聚类有效性指标,在此基础上提出了一种新的确定K-means算法最佳聚类数的方法。理论研究和实验结果验证了以上算法方案的有效性和良好性能。  相似文献   

18.
针对初始聚类中心对传统K-means算法的聚类结果有较大影响的问题,提出一种依据样本点类内距离动态调整中心点类间距离的初始聚类中心选取方法,由此得到的初始聚类中心点尽可能分散且具代表性,能有效避免K-means算法陷入局部最优。通过UCI数据集上的数据对改进算法进行实验,结果表明改进的算法提高了聚类的准确性。  相似文献   

19.
为了解决K-means算法在聚类数量增多的情况下,因选择了不合适的中心初值而影响到聚类效果这一问题,提出了一种局部迭代的快速K-means聚类算法(PIFKM+?)。该算法在K-means聚类的基础上,不断寻找能够被分割的聚类簇和能够被删除的聚类簇,并对受影响的局部数据进行重新聚类处理,降低了整个聚类更新的时间复杂度,提高了聚类的效果。PIFKM+?算法在面对聚类数量众多的情况下,具有能够快速更新聚类、对聚类中心初值不敏感、能够提高聚类精确度等优势。通过与K-means和K-means++两种算法的比较,在仿真数据集和真实数据集的综合实验下,验证了该算法的精确性、高效率性和可扩展性,同时实验结果的统计分析表明该算法在提高了聚类精确度的同时并没有损失太多的时间效率。  相似文献   

20.
K-means算法所使用的聚类准则函数是将数据集中各个簇的误差平方值直接相加而得到的,不能有效处理簇的密度不均且大小差异较大的数据集。为此,将K-means算法的聚类准则函数定义为加权的簇内标准差之和,权重为簇内数据对象数占总数目的比例。同时,调整了传统K-means算法将数据对象重新分配给簇的方法,采用一个数据对象到中心点的加权距离代替传统K-means算法中的距离,将数据对象分配给使加权距离最小的中心点所在的簇。实验结果表明,针对模拟数据集的聚类,改进K-means算法可以明显减少大而稀的簇中数据对象被错误地分配到相邻的小而密簇的可能性,改善了聚类的质量;针对UCI数据集的聚类,改进算法使得各个簇更为紧凑,从而验证了改进K-means算法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号