首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
为解决传统协同过滤算法中用户评分数据稀疏性,忽视物品及用户特征,所带来的推荐质量下降的问题,提出了一种基于安全的、高置信度的半监督方法的协同过滤推荐算法,采用安全的,高置信度的半监督方法S4VM对没有评分的数据进行有效预测,同时考虑用户的行为信息以及物品及用户特征。通过对未评分数据进行预测,能够有效地缓解数据的稀疏性,从而提高寻找最近邻的准确度。实验结果表明,该算法能够有效地提高系统的推荐质量。  相似文献   

2.
协同过滤系统项目冷启动的混合推荐算法   总被引:1,自引:0,他引:1       下载免费PDF全文
研究协同过滤推荐系统中的冷启动问题,运用基于内容预测的方法,对系统内未被用户评价过的项目进行评分预测,应用2种优化步骤,过滤掉预测不准确的用户的评分。在此基础上用协同过滤的方法产生推荐,使传统推荐算法中无法推荐给用户的项目得到推荐机会。通过一系列实验证明,该混合推荐算法能保证推荐准确性,提高了新项目的推荐概率。  相似文献   

3.
微博作为社交媒体平台为人们了解信息提供了极大的便利,但同时也使用户每天被海量的信息包围,用户很难迅速地找到自己感兴趣的话题,给用户带来困扰。提出了先进行协同过滤,再进行内容过滤的混合算法,这样尽量可以利用不同算法的优点,避开算法的缺点,基于初步的结果,面向单个用户,进一步采用内容过滤算法,有效提高推荐准确度,从而提高推荐系统的推荐准确度。通过实验表明,提出的混合算法相较于协同过滤推荐算法,在微博话题推荐准确率有显著提升。  相似文献   

4.
《传感器与微系统》2019,(7):131-134
针对传统的推荐系统存在推荐精度较低且冷启动较严重的问题,综合考虑评论文本与评分而提出改进的稀疏边缘降噪自动编码与近邻项目影响力的矩阵分解模型相结合的混合推荐方法。通过改进的稀疏边缘降噪自动编码模型从商品评论文本中来提取商品特征,将用户评论与评分联合,同时综合考虑了近邻用户对于目标用户的影响,将近邻项目影响力整合到矩阵分解算法之中,与传统的协同深度学习模型(CDL)和混合SDAE模型相比,最高可提升8. 370%。  相似文献   

5.
6.
协同过滤技术中的矩阵分解是推荐系统中的有效技术手段。而现在主流的矩阵分解算法假设推荐系统评分数据服从高斯分布,因而受数据噪声影响,其鲁棒性达不到预期。为了解决这个问题,提出基于高斯混合模型的矩阵分解算法。设定评分数据服从高斯混合分布,在此基础上应用基于贝叶斯概率的矩阵分解模型。同时,提出一种基于半监督学习的数据实验方法,充分挖掘有标签和无标签数据。实验结果表明,基于高斯混合分布的矩阵分解算法对评分噪声拥有更强的免疫力,同时可以提高预测准确率。  相似文献   

7.
8.
胡炜 《计算机时代》2009,(11):16-17,20
介绍了协同过滤算法,并对算法进行了改进,解决了用户稀疏的情况下传统算法的不足,同时通过引入评分阈值,显著提高了个性化协同过滤算法的推荐精度。  相似文献   

9.
协同过滤是一种应用广泛的推荐算法,其核心过程是学习用户和商品的向量表示。基于图卷积网络(GCN)的协同过滤算法在向量嵌入过程中加入邻居节点的关联信息,进一步提升了算法的推荐性能。然而,图协同过滤算法中存在过平滑现象,且其仅采用邻接矩阵在局部结构中扩展,没有从图的整体结构出发挖掘节点间潜在的交互模式,使得交互信息来源单一。提出一种基于GCN的双通道协同过滤推荐算法DCCF。将向量嵌入过程划分为局部卷积通道和全局卷积通道,以获取不同类型的连接信息。在局部卷积通道中,直接定位邻域节点并使用单层网络结构完成计算,优化信息的聚合方式以应对过平滑问题。在全局卷积通道中,通过聚类的方式构造全局交互图并参与信息的聚合过程,从而挖掘节点间的潜在联系。将局部信息与全局信息相结合,以获得包含不同类型高阶关系的节点向量表示。在3个公开数据集上进行对比实验,结果表明,相较基准算法中性能表现最优的模型,DCCF在归一化折损累计增益和召回率这2个指标上最高分别提升2.8%和5.0%。  相似文献   

10.
为解决协同过滤算法在处理数据量较大时存在推荐效率低的问题,提出一种自适应混合协同推荐算法。根据待推荐用户活跃度和目标物品新鲜度调节模型权重,基于张量分解计算物品间的相似度,通过短路径枚举叠加生成预测结果。实验结果表明,与CBCF算法相比,该算法推荐准确率提高了28.6%。  相似文献   

11.
针对传统基于单分类的推荐算法容易陷入单指标最优的困境和推荐精度低的问题,提出一种融合K-最近邻(KNN)和Gradient Boosting(GBDT)的协同过滤推荐算法.该算法利用K-最近邻法过滤出目标用户的多组候选最近邻居集,并综合集成学习的优点,采用多分类器对多组推荐结果进行集成.在相似度计算公式中引入了若只...  相似文献   

12.
协同过滤算法作为一种成功的个性化推荐技术已经被应用到很多领域中,但随着系统规模的扩大,它的效率逐渐降低。针对它出现的缺点,提出一种新的基于内容和网络结构图的混合算法,实验数据证明该算法可以解决传统推荐算法中存在的一些缺陷。  相似文献   

13.
传统协同过滤推荐算法仅仅根据稀疏的评分矩阵向用户推荐,存在推荐质量不高的问题.提出了一种属性和评分的协同过滤混合推荐算法.该算法由项目的类别属性计算项目之间基于属性的相似性,考虑到用户兴趣随时间的变化,构建评分时间权重的指数函数,并应用到项目之间的Pearson相关相似性中.通过权重因子加权项目之间基于属性的相似性和项目之间的Pearson相关相似性,然后计算基于项目属性的评分预测.描绘职业分类树,构建职业相似性模型,并与性别加权结合产生用户综合属性的相似性,得到基于用户属性的评分预测.最后,综合两者计算混合评分预测.在Movielens实验数据集下,实验结果表明提出的算法具有较好的平均绝对误差.  相似文献   

14.
针对协同过滤推荐算法在数据稀疏性及在大数据规模下系统可扩展性的两个问题, 在分析研究Hadoop分布式平台与协同过滤推荐算法后, 提出了一种基于Hadoop平台实现协同过滤推荐算法的优化方案. 实验证明, 在Hadoop平台上通过MapReduce结合Hbase数据库实现算法, 能够有效地提高协同过滤推荐算法在大数据规模下的执行效率, 从而能够进一步地搭建低成本高性能、动态扩展的分布式推荐引擎.  相似文献   

15.
符合学习者特征的学习资源对于提高协作学习效率具有重要的影响。但是传统的学习资源推荐,没有充分考虑学习者、学习资源的特征和高效的推荐算法。针对上述问题,提出了基于协同过滤的学习资源推荐算法,根据学习者学习特征、学习资源特征和学习者对学习资源历史评价信息,采用协同过滤推荐算法,实现学习资源推荐。首先,通过学习者特征和学习资源的评分,寻找相似学习者并计算学习资源预测评分,然后根据该评分值和学习资源与学习者匹配度推荐学习资源,从而为学习者推荐符合自己兴趣爱好最合适的学习资源。实验结果表明该算法在个性化学习资源推荐的准确性上优于传统算法。  相似文献   

16.
协同过滤算法已广泛应用在推荐系统中,在实现新异性推荐功能中效果显著,但仍存在数据稀疏、扩展性差、冷启动等问题,需要新的设计思路和技术方法进行优化.近几年,深度学习在图像处理、目标识别、自然语言处理等领域均取得突出成果,将深度神经网络模型与推荐算法结合,为构建新型推荐系统带来新的契机.本文提出一种新式混合神经网络模型,该模型由栈式降噪自编码器和深度神经网络构成,学习得到用户和项目的潜在特征向量以及用户-项目之间的交互行为模型,有效解决数据稀疏问题从而提高系统推荐质量.该推荐算法模型通过MovieLens电影评分数据集测试,实验结果与SVD、PMF等传统推荐算法和经典自编码器模型算法作对比,其推荐质量得到显著提升.  相似文献   

17.
针对传统的协同过滤推荐算法存在评分数据稀疏和推荐准确率偏低的问题,提出了一种优化聚类的协同过滤推荐算法。根据用户的评分差异对原始评分矩阵进行预处理,再将得到的用户项目评分矩阵以及项目类型矩阵构造用户类别偏好矩阵,更好反映用户的兴趣偏好,缓解数据的稀疏性。在该矩阵上利用花朵授粉优化的模糊聚类算法对用户聚类,增强用户的聚类效果,并将项目偏好信息的相似度与项目评分矩阵的相似度进行加权求和,得到多个最近邻居。融合时间因素对目标用户进行项目评分预测,改善用户兴趣变化对推荐效果的影响。通过在MovieLens 100k数据集上实验结果表明,提出的算法缓解了数据的稀疏性问题,提高了推荐的准确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号