共查询到19条相似文献,搜索用时 78 毫秒
1.
使用盐酸-氢氟酸并采用微波消解处理炉渣样品,选择B 182.577nm或B 249.678nm为分析线,在基体没有明显干扰的情况下,选择自动匹配法(FITTED)进行谱线校正并扣除相应背景,采用高纯物质进行基体匹配后,配制标准溶液系列,建立了使用电感耦合等离子体原子发射光谱法(ICP-AES)测定炉渣系列样品中硼元素含量的方法。硼的质量分数为0.0006%~0.25%(B 182.577nm)或0.0008%~0.25%(B 249.678nm)范围内校准曲线呈线性,线性相关系数r均不小于0.9998;方法中硼的检出限小于0.0002%。方法应用于炉渣样品中硼的测定,结果的相对标准偏差(RSD,n=6)小于3%,加标回收率为96%~102%,与电感耦合等离子体质谱法(ICP-MS)进行比较,测定结果较为满意。 相似文献
2.
准确测定铁矿石中硫化铁对于铁矿石的物相分析具有重要意义。目前,铁矿石中硫化铁的前处理方法以系统分析法为主,虽然该方法发展较为成熟,但是存在着步骤繁琐、分离不彻底、硫化铁易损失等问题,易导致测定结果不准确。通过不同溶样方法的对比试验,确定了采用饱和溴水-高锰酸钾混合溶液直接浸取铁矿石的方法以充分浸取硫化铁;通过不同定容方式的对比试验,选择氟化铵-盐酸混合溶液作为提取介质,以最大程度抑制铁的水解,经电感耦合等离子体原子发射光谱法(ICP-AES)测定,得到铁矿石中硫化铁(以铁计,下同)的含量。方法中校准曲线的线性相关系数为0.999 9;硫化铁的检出限为3μg/g。按照实验方法测定铁矿石物相成分分析标准物质中硫化铁,结果的相对标准偏差(RSD,n=8)为1.9%~3.5%,相对误差为1.3%~2.5%。实验方法用于测定3个铁矿石实际样品中硫化铁,结果的RSD(n=5)为0.68%~3.0%。方法适用于铁矿石中0.04%~8%(质量分数)硫化铁的测定。 相似文献
3.
在锌的冶炼过程中,为了防止“烧板”现象,需要快速检测锌精矿中锑元素含量。采用硝酸、氢氟酸微波消解样品,消解结束后加入硫酸,用赶酸仪赶氢氟酸,选择Sb 217.582nm为分析谱线,采用基体匹配法绘制校准曲线消除基体效应的影响,使用电感耦合等离子体原子发射光谱法(ICP-AES)测定锌精矿中锑。锌质量浓度为0.05~200mg/L时与其发射强度呈线性关系,相关系数为0.9996;方法检出限为0.003%(质量分数,下同),测定下限为0.01%。按照实验方法测定锌精矿样品中锑,结果的相对标准偏差(RSD,n=12)为1.7%;加标回收率为98%~99%。按照实验方法测定4个锌精矿样品中锑,测定结果与氢化物发生-原子荧光光谱法或硫酸铈滴定法的测定结果一致。 相似文献
4.
通过最佳微波消解条件、分析谱线和内标元素的选择,基体及共存元素间光谱干扰的研究,检测限的测定以及样品分析,建立了微波消解-电感耦合等离子体原子发射光谱法测定硼铁中硼的分析方法。测定时可选择182.641,208.959,249.773 nm 3条谱线作为硼的分析线。当选择前两条谱线时,铁的质量浓度在0.5~2 mg/mL范围对测定没有影响;但是当铁的质量浓度在2 mg/mL时,由于硼的分析线(249.773 nm)受铁谱线(249.782 nm)干扰,对测定产生影响,这种影响可通过基体匹配方法消除。与硼共 相似文献
5.
磷矿石中多种元素的准确测定对磷矿石的开发利用具有重要指导作用。采用微波消解法以盐酸、硝酸和氢氟酸处理磷矿石,消解完成后加入20 mL饱和硼酸溶液中和残余的氢氟酸从而避免刻蚀玻璃引入杂质;再使用电感耦合等离子体原子发射光谱法(ICP-AES)测定磷、钾、钠、钙、镁、硅、铝、铁、钛,建立了微波消解-ICP-AES测定磷矿石中9种主次元素的分析方法。试验探究了微波消解用酸,结果表明仅使用盐酸和硝酸不能完全消解磷矿石,使用盐酸、硝酸和氢氟酸才能使磷矿石溶解完全;对氢氟酸用量进行了优化,选择加入2 mL氢氟酸。在优化的实验条件下,各元素质量浓度在线性范围内与其对应的发射光谱强度呈良好的线性关系,相关系数均不小于0.999 7;方法中各元素的检出限为0.003%~0.078%(质量分数)。按照实验方法测定磷矿石标准物质,测定值与认定值一致,测定结果的相对标准偏差(RSD,n=5)均小于3%。按照实验方法测定磷矿石样品,测定结果的相对标准偏差(n=5)在0.26%~1.9%之间,加标回收率在90%~105%之间。 相似文献
6.
7.
采用微波消解技术处理铁矿石样品,电感耦合等离子体原子发射光谱法同时测定铁矿石中8种成分。试验了不同种类铁矿石的密闭容器微波消解条件,对分析元素进行光谱干扰考察,选择了合适的分析谱线。方法加标回收率在97.0%-102.3%之间,相对标准偏差小于3%。应用于铁矿石标准样品分析,测定结果与认定值吻合较好。 相似文献
8.
中低合金钢中的铌、钨、锆、钴、钒可以改善钢的性能,提高钢的强度、耐腐蚀性、焊接性能等,而锡则是钢中的有害元素,因此对钢中这些元素的测定十分必要。本文利用微波消解法消解中低合金钢样品,由于溶样的温度和压力提高,样品在硫酸和氢氟酸介质中能够快速和完全地溶解。试样溶解后加入草酸络合铌,硼酸络合过量的氢氟酸,并在配制校准曲线系列溶液时加入与被测试液相同量铁、溶解酸,使校准曲线系列溶液和被测试液中的基体、酸度基本一致以消除基体带来的干扰,然后用电感耦合等离子体原子发射光谱法 (ICP-AES)测定了试液中铌、钨、锆、钴、钒、锡含量。用本法测定了中低合金钢标样中铌钨锆钴钒锡,测定值与认定值吻合,测定结果的相对标准偏差在0.03%~1.2%。 相似文献
9.
钛及钛合金产品标准中要求检测19种元素的含量,但是目前国内的相关标准方法中,一次只能检测一个或几个元素。试验采用HCl-HF-HNO3-HClO4酸溶体系并使用微波消解法处理样品,采用基体匹配法消除基体效应的影响,结合多谱拟合(MSF)校正技术解决部分元素的光谱干扰。使用电感耦合等离子体原子发射光谱法(ICP-AES)测定钛及钛合金中Fe、Si、Mn、Mo、B、Al、Sn、Cr、V、Zr、Mg、Nb、Pd、Ni、Ta、W、Ru、Cu、Nd,从而建立了ICP-AES同时测定钛及钛合金中19种元素的分析方法。在各元素线性范围内,校准曲线线性相关系数均在0.998以上;方法中各元素定量限为0.001%~0.005%。实验方法用于测定钛合金样品中19种元素,结果的相对标准偏差(RSD,n=7)均小于5.0%,加标回收率在95%~102%之间。 相似文献
10.
使用盐酸-硝酸-氢氟酸以及微波消解的方式溶解镍基合金样品,选择Si 251.611 nm或Si 288.158 nm为分析线,Ar 420.069 nm为内标元素谱线,并用两点校正法扣除背景,采用基体匹配法配制标准溶液系列并绘制校准曲线以消除基体效应的影响,建立了使用电感耦合等离子体原子发射光谱法(ICP-AES)测定镍基合金中硅的分析方法。硅质量分数在0.008%~5.00%范围内(Si 251.611 nm),以及硅质量分数在0.015%~5.00%范围内(Si 288.158 nm)分别与其发射强度呈线性,相关系数均大于0.999;方法中硅的检出限不大于0.005%(质量分数)。方法应用于镍基合金样品中硅的测定,结果的相对标准偏差(RSD,n=10 )小于1%。按照实验方法测定镍基合金标准样品中硅,测定结果与认定值相吻合。 相似文献
11.
采用微波消解样品,建立了一种快速测定钒钛烧结矿中钒、钛、铝、镁、锰、钾、钠、铅、锌9种元素的电感耦合等离子体原子发射光谱法(ICP-AES)。试样被王水消解后在选定分析谱线的波长下测定,基体和共存元素对测定元素没有光谱干扰,基体效应用基体匹配法消除。钒、钛、铝、镁的质量分数在0.01%~3.00%范围内,锰、钾、钠、铅、锌的质量分数在0.001%~0.35%范围内,校准曲线呈线性,线性相关系数(r)均大于0.999。方法应用于钒钛烧结矿标准样品的测定,上述元素测定值与认定值相符。对一钒钛样品中铝、钒、钛、锰、镁、锌、钾、钠和铅分别测量10次,测定结果的相对标准偏差(RSD,n=10)均小于5%,方法可以应用于生产检验中。 相似文献
12.
介绍了电感耦合等离子体原子发射光谱法(ICP-AES)测定钛合金中贵金属元素Ir、Au、Pd、Rh、Ru的方法。通过溶样方法选择、仪器工作 参数优化、基体和共存元素对待测元素的影响等试验,确定了采用盐酸、氢氟酸和硝酸溶解样品,用基体匹配方法消除基体钛对测定的影响 。在仪器最佳工作条件下、选择了Ir 224.268nm 、Au 267.595 nm 、Pd 340.458 nm、Rh 343.489 nm 、Ru 240.272 nm 谱线为分析线,测 得方法的检出限是0.000 1 ~0.003 μg/mL。加标回收及精密度试验表明:本方法能满足钛合金中Ir、Au、Pd、Rh、Ru等元素分析的要求, 回收率在90%~110%之间,相对标准偏差小于14%(n=6)。 相似文献
13.
以HF、HNO3和HCl的混酸(VHF∶VHNO3∶VHCl=1∶6∶3)为消解试剂,采取斜坡升温方式,在优化的消解程序下对样品进行微波消解,消解液以水定容后采用电感耦合等离子体原子发射光谱法(ICP AES)测定Si、Al、Mn、P、Cu、Co、Cr、Ni、V、As、Cd、Pb、Ca、Mg等14种杂质元素含量。考察了样品的最佳消解条件和光谱干扰情况。结果表明,样品采用以5 min升温至130 ℃并保持3 min,再以5 min升温至200 ℃并保持10 min的消解程序消解的效果最好;选择合适的光谱线作为被测元素的分析线并采用基体匹配及同步背景校正法可以消除钛基体影响和谱线的重叠干扰。方法的检出限为5 μg/L(Mg)~60 μg/L(Si),背景等效浓度为4 μg/L(Mg)~55 μg/L(Si),用于测定富钛料中上述元素, 相对标准偏差(RSD,n=8)≤65%,加标回收率在95%~108%之间。 相似文献
14.
提出了试样经微波消解后用电感耦合等离子体原子发射光谱法(ICP AES)测定铂铑系列合金中铑的分析方法。对试样的微波消解条件、基体和谱线干扰等进行研究。结果表明,在230℃温度下,以盐酸和少许过氧化氢、硝酸和氢氟酸为消解试剂,试样在密闭容器中分两次进行消解60 min可以完全溶解。消解液用ICP AES测定时,通过选择合适的分析谱线可避免基体和光谱干扰。用本方法测定了系列铂铑合金的模拟试样,测定结果与行业标准方法的分析结果相一致,相对误差在010%~030%之间,相对标准偏差小于066%(n=6)。该法可以用于铂铑系列合金中铑含量的测定。 相似文献
15.
脱硝催化剂中各元素是评估和改善催化剂效能的重要研究对象,准确、快速地测量其中各元素含量,对催化剂性能评价、失活与再生、催化剂中毒等深入研究具有重要意义。采用微波消解在酒石酸-氢氟酸-硝酸体系中消解试样,结合动态背景校正技术,采用基体匹配法消除基体效应,在选定的最佳分析谱线和仪器合适的工作条件下,使用电感耦合等离子体原子发射光谱法(ICP-AES)测定钒、钨、钼、硅、铝、钙、钡、铁、锰、铬、镁、磷、砷,从而建立了电感耦合等离子体原子发射光谱法同时测定脱硝催化剂中13种元素的分析方法。在各元素线性范围内,校准曲线的线性相关系数均在0.999以上;方法中各元素检出限为0.001%~0.021%(质量分数)。实验方法用于测定脱硝催化剂样品中钒、钨、钼、硅、铝、钙、钡、铁、锰、铬、镁、磷、砷,结果的相对标准偏差(RSD,n=7)均小于2.0%,加标回收率在94%~103%之间。按照实验方法测定3个脱硝催化剂样品中13种元素,同时采用其他方法进行比对(其中钼、钨、硅、钒、铝、钡、钙采用国家标准GB/T 31590—2015 X射线荧光光谱法测定;镁、铁、铬、磷、锰、砷采用国家标准GB/T 34701—2017电感耦合等离子体原子发射光谱法测定),测定结果相符合。 相似文献
16.
采用微波消解法以盐酸-氢氟酸-水体系处理样品,选择K 769.896nm、Na 588.995nm为分析谱线,建立了使用电感耦合等离子体原子发射光谱法(ICP-AES)测定钒钛铁精矿中钾和钠的方法。实验表明:采用8.0mL盐酸-5.0mL氢氟酸-5.0mL水以微波消解法可将0.500 0g钒钛铁精矿试样溶解完全。铁基体对钠的测定基本无影响,但对钾的测定影响较大,不可忽略,故实验在绘制校准曲线用标准溶液系列中加入与测试样品所含铁基体大致相当的铁基体溶液以消除铁基体效应的影响。钾和钠的质量分数分别在0.006%~0.08%、0.005%~0.04%范围内与其发射强度呈线性,校准曲线线性相关系数分别为0.999 8、0.999 9;方法检出限钾为0.03%,钠为0.02%。方法应用于钒钛铁精矿标准样品中钾和钠的测定,测定值与认定值相符,相对标准偏差(RSD,n=10)均小于5%。 相似文献
17.
选择酒石酸-氢氟酸-硝酸体系并利用微波消解处理样品,使用电感耦合等离子体原子发射光谱法(ICP-AES)测定钨和钛,建立了微波消解-电感耦合等离子体原子发射光谱法测定废脱硝催化剂中钨和钛的方法。试验考察了消解体系及用量,优化了微波消解程序。结果表明,钨和钛的质量浓度分别为0.05~5mg/L和0.01~10mg/L与其相应的发射强度呈线性关系,相关系数分别为0.9995、0.9998,检出限分别为0.002%、0.0002%。废脱硝催化剂中铁、铝、钙、镁、钒和钼等元素对钨和钛的测定无影响。方法用于废脱硝催化剂样品中钨和钛的测定,结果的相对标准偏差(RSD,n=6)均小于3%,并与原子吸收光谱法(AAS)测定值一致。 相似文献
18.
建立了应用电感耦合等离子体原子发射光谱法(ICP-AES)测定金属镁中Be、Al、Si、Cr、Mn、Fe、Ni、Cu、Zn、Cd、Sb、Bi等12种杂质元素的分析方法。样品用HCl+HNO3经微波消解后,用ICP-AES测定上述12种元素,对影响测定的各种因素进行了详细的研究,确定了仪器的最佳工作参数,选择了合适的分析谱线。结果表明,12种金属元素的检出限在0.12~17.59 μg/L之间;校准曲线的线性关系良好,线性相关系数R2≥0.999 9;样品分析结果的精密度良好,RSD 相似文献
19.
提出了微波消解-电感耦合等离子体原子发射光谱(ICP-AES)同时测定稀土合金渣中氧化镧、氧化铈、氧化镨、氧化钕、氧化钐和氧化镝等主要稀土氧化物的分析方法。考察4种不同的消解试剂体系,优化了消解参数并选择了合适的分析线。结果表明,在以下条件下样品的消解效果最好:以HNO3-HCl-HF-H2O2(V(HNO3)∶V(HCl)∶V(HF)∶V(H2O2)=4∶2∶2∶1)作为消解试剂,采用四段升温的消解程序,设定的最低温度为160 ℃,最低压力为1.5 MPa,最高温度为225 ℃,最高压力为3.5 MPa,每段的最大温差不超过25 ℃,最大压差不超过1 MPa。在选定的仪器参数下,以408.671,413.765,390.843,401.255,359.260,353.171 nm 波长的谱线分别作为La,Ce,Pr,Nd,Sm,Dy的分析线,用稀土氧化物绘制校准曲线,ICP-AES法测定消解液中上述氧化物。测定结果的相对标准偏差在0.44%~0.98% 范围,加标回收率在94%~106%之间。 相似文献