首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
电火花放电加工中工具电极损耗理论研究   总被引:7,自引:0,他引:7  
在电火花放电加工过程中,采用负极性加工时,工具电极的损耗主要是由于火花放电前几百秒出现的电子流对工具电极表面的轰击造成的,本文对极间脉冲电流和电压的变化进行研究,推导出电子流传递给工具的能量,并考虑到放电过程中的出现的正极积碳现象,在此基础并具电极损耗量的模型,最后用实验验证。  相似文献   

2.
电火花线电极磨削机构设计研究   总被引:2,自引:0,他引:2  
在比较几种微细电极制造方法的基础上,设计了电火花线电极磨削机构,该机构能够有效地用于微细电极与微细轴的制造。  相似文献   

3.
在电火花放电加工过程中 ,采用负极性加工时 ,工具电极的损耗主要是由于火花放电前几百纳秒出现的电子流对工具电极表面的轰击造成的。本文对极间脉冲电流和电压的变化进行研究 ,推导出电子流传递给工具的能量 ,并考虑到放电过程中出现的正极积碳现象 ,在此基础上建立工具电极损耗量的模型。最后用实验验证  相似文献   

4.
在比较几种微细电极制造方法的基础上,设计了电火花线电极磨削机构,该机构能够有效地用于微细电极与微细轴的制造。  相似文献   

5.
在微细电火花微孔加工中,微细工具电极的制作精度是决定微孔加工质量的关键。本文介绍了作者研制的微细电火花加工样机。该机床应用了线电极电火花磨削法制作微细轴,并在同一台机床上用制作的微细轴作为工具电极加工微孔;同时为提高微孔的加工质量,采用了主轴横轴布局结构。该机床还采用了微能放电电源、去离子水工作液等加工工艺。经过实验加工,获得了高质量的微细轴以及微孔。  相似文献   

6.
应用线电极磨削法的电火花微孔加工   总被引:2,自引:0,他引:2  
在微细电火花微孔加工中,微细工具电极的制作精度是决定微孔加工质量的关键。本文介绍了作者研制的微细电火花加工样机。该机床应用了线电极电火花磨削法制作微细轴,并在同一台机床上用制作的微细轴作为工具电极加工微孔;同时为提高微孔的加工质量,采用了主轴横轴布局结构。该机床还采用了微能放电电源、去离子水工作液等加工工艺。经过实验加工,获得了高质量的微细轴以及微孔。  相似文献   

7.
8.
杨建明  卢龙  李映平 《机床与液压》2007,35(11):151-154,157
工具电极是电火花加工中非常重要的一项因素,电极的制备是实现电火花加工的关键.本文介绍了电火花加工工具电极制备技术最新的研究进展,包括石墨电极、聚合物复合材料电极、电火花表面改性电极、电火花磨削用电极和微细电极的制备方法,以及电铸法和基于快速成形技术的电极制备方法等.  相似文献   

9.
电火花成形加工过程中,工具电极的损耗是影响工件几何形状精度的主要因素之一。从工具电极的制作工艺着手,分别利用直流和脉冲电流电铸工具电被,进行了电极放电损耗试验。通过试验和SEM形貌研究分析了工艺参数对电极耐电蚀性能的影响,并用正交试验法优化了工艺参数。结果表明,脉冲电铸铜电极可降低损耗,且在一定工艺条件下脉冲电铸电极具有优异的耐电蚀性能。  相似文献   

10.
电火花成形加工过程中,极间放电在蚀除工件材料的同时,也会对工具电极带来一定程度的损耗,进而影响工件的尺寸及形状精度,降低加工效率。目前普遍采用更换电极重复加工的方式来获得最终形面,需要消耗大量的工具电极和工时。针对电火花加工的工具电极损耗展开了研究,通过系统地分析所得电极形面特征及进给方向与损耗量之间的关系,建立了实用的电极损耗预测模型。通过实验证明了该模型能准确预测工具电极形面损耗,为电火花加工的电极损耗预测提供了有效方法。  相似文献   

11.
针对电火花加工中多材质电极的损耗和形状变化,在模具钢工件上开展了电火花多材质电极加工实验研究,分析了电极材料、加工极性对多材质电极损耗的影响规律,并以黄铜-模具钢电极、紫铜-铜钨合金电极为研究对象,分析了多材质电极的形状变化规律。结果表明:长度损耗小的电极材料能辅助减小同组其他材料的电极损耗,但通常其角损耗较大;加工中多材质电极结合处形成过渡曲面,当加工进入均匀损耗阶段后,过渡曲面的圆弧半径和圆心角基本恒定不变。  相似文献   

12.
齿轮精锻模具型腔通常采用电火花加工,用于电火花加工的电极对于模具型腔的制造精度具有重要影响。通过对圆柱齿轮精锻和圆锥齿轮冷摆辗精密成形工艺中工具电极的齿形设计进行了详细的研究,并基于Visual C++和Pro/E平台上研制开发出齿轮精锻中的模具设计、电极加工模块,大幅度提高了工具电极的设计效率。  相似文献   

13.
通过实验研究了微细电火花加工盲孔的电极损耗,并基于Matlab软件,在二维矩阵的基础上,通过选取网格设定大小,设定工具运动情况、放电间隙、放电间隙影响因子、单个脉冲去除凹坑大小及相对电极损耗率等参数,仿真电极形状变化的全过程。该模型经后续完善后可用于预测补偿。为了验证仿真模型,对比了仿真结果与实际实验,证明该仿真方法可行。  相似文献   

14.
李铠月  张云鹏  杨光美  闫妍 《电加工》2013,(6):28-31,35
针对SiCp/Al的加工,提出一种超声振动磨削放电复合加工的方法.从加工效率、加工稳定性及表面质量等方面与电火花加工进行了对比试验研究。分析了两种加工方法的脉冲宽度和峰值电流对加工速度和表面粗糙度的影响,结果表明:电火花加工的表面粗糙度平均值为尺04.5μm,超声振动磨削放电复合加工的表面粗糙度平均值为Ra2μm:超声振动磨削放电复合加工的稳定性比电火花加工好,但加工速度较低。通过扫描电镜对两种加工方法下零件表面形貌和重熔层进行了观测,对试件表面进行了X射线衍射分析,表明采用超声振动磨削放电复合加工SiCp/Al复合材料可获得较好的表面质量。  相似文献   

15.
电火花加工是整体叶轮的主要加工工艺方法之一,其中工具电极的制造是关键.研究了采用电铸技术制备电火花加工工具电极.由于电极结构复杂,电沉积时电场发生畸变,导致阴极表面的电场分布极不均匀,侧壁与底部结合处的电流密度远小于阴极表面其他地方的电流密度,针对这种情况,通过增加辅助阳极、屏蔽侧面等改善措施,成功制备了工具电极.  相似文献   

16.
目的 研发一种高精高效单晶碳化硅表面抛光技术。方法 采用电磁场励磁的大抛光模磁流变抛光方法加工单晶碳化硅,利用自制的电磁铁励磁装置与磁流变抛光装置,进行单因素实验,研究电流强度、工作间隙和抛光时间等工艺参数对单晶碳化硅磁流变抛光加工性能的影响,并检测加工面粗糙度及其变化率来分析抛光效果。结果 在工作间隙1.4 mm、电流强度12 A的工艺参数下,加工面粗糙度值随着加工时间的增加而降低,抛光60 min后,加工面粗糙度值Ra达到0.9 nm,变化率达到98.3%。加工面粗糙度值随通电电流的增大而减小,随着工作间隙的增大而增大。在工作间隙为1.0 mm、通电电流为16 A、加工时间为40 min的优化参数下抛光单晶碳化硅,可获得表面粗糙度Ra为0.6 nm的超光滑表面。结论 应用电磁场励磁的大抛光模盘式磁流变抛光方法加工单晶碳化硅材料,能够获得亚纳米级表面粗糙度。  相似文献   

17.
提出了一种以电火花加工技术对半导体硅材料进行铣削加工的方法,分别进行了单晶硅和45钢的电火花铣削加工,发现铣削单晶硅的电极体积相对损耗仅为0.41%,而45钢达到9.22%.针对此现象,从蚀除机理、放电间隙以及放电电流的爬坡特性方面对单晶硅放电加工特性进行了研究,并解释了其电极损耗低的原因.最后研究了不同加工规准下,单晶硅电火花铣削加工电极相对损耗的工艺规律.  相似文献   

18.
为了提高硅晶体电火花成形加工效率、降低电极损耗,采用丙三醇水溶液作为工作介质。分析了介质中的碳、氢、氧元素对加工效果的影响,以及电导率、粘度、介质成分对加工特性的影响,研究表明:击穿放电间隙受电导率与粘度的影响,丙三醇水溶液可提高放电间隙,增强加工稳定性;丙三醇分子会在放电高温下分解出碳分子,其自身的微观爆炸力可促使碳分子和极间蚀除产物向两极移动,增强了电极的涂覆效应,降低了电极损耗。工艺实验结果表明:丙三醇水溶液的加工特性优于去离子水,采用质量分数为30%的丙三醇溶液加工时的最佳占空比为1∶7,加工效率为11.88 mm~3/min,电极损耗比为3.7%。  相似文献   

19.
杨梦熊  惠迎雪 《表面技术》2021,50(9):134-140
目的 通过基于碳化硅陶瓷靶的直接溅射和基于硅靶与甲烷的反应溅射,在Si(100)基底上沉积碳化硅薄膜,对比两种工艺制备碳化硅薄膜的异同.方法 采用直接磁控溅射与反应磁控溅射工艺制备碳化硅薄膜,通过白光干涉仪、轮廓仪、X光电子能谱仪(XPS)分析薄膜粗糙度、厚度、沉积速率、组分,通过X射线衍射仪和扫描电子显微镜分析薄膜的物相结构和形貌.结果 基于硅靶和甲烷的反应溅射工艺,甲烷流量百分比为20%~70%时,沉积速率从11.3 nm/min升高到36.5 nm/min.甲烷流量百分比为20%~60%时,表面粗糙度Rq值变化不大;甲烷流量百分比为70%时,Rq值有增大的趋势.对于甲烷反应溅射工艺,硅碳元素比例可调,但甲烷气体不易控制.基于碳化硅陶瓷靶工艺,随沉积时间(即膜层沉积厚度)的增加,表面粗糙度Rq变化不大,硅碳原子比接近1:1.两种工艺制备的薄膜均为晶态,且为8H-SiC.结论 比较两种工艺,相同靶功率下,硅靶反应溅射的沉积速率明显快于碳化硅陶瓷靶.硅靶反应溅射的元素比例可调,但甲烷气体不易控制;碳化硅陶瓷靶的沉积过程稳定,硅碳原子比接近1:1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号