首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
提出了一种利用动态场致射流作为工具电极进行微细放电加工的方法。该方法是利用工件和喷嘴之间的电势差形成高压电场,使喷嘴出口的带电液滴同时受到表面张力和电场力的作用,带电液滴形成泰勒锥。在强电场力作用下,泰勒锥顶端产生一束极微细的电解液射流。当场致射流喷射到工件表面附近时,高压电场击穿射流尖端与工件间的气体介质,产生放电现象,工件表面放电点局部材料因放电所产生的热量而熔融、气化,从而产生材料蚀除。  相似文献   

2.
单脉冲放电的蚀除特征是放电加工的基本单位,开展单脉冲放电蚀除特征研究对于认识连续放电加工的过程以及放电加工时的电参数选择有着十分重要的意义。首先对单脉冲放电材料蚀除机制进行了介绍;然后基于材料的电—热模型,借助ANSYS软件对能量在材料内部的热传导过程进行了仿真,获得了材料熔融区域的半径随脉宽变化的规律;最后在自主研发的微细电火花加工机床上开展了不同脉宽、不同极性下的单脉冲放电实验研究。实验结果表明:无论极性如何,随脉宽增加,电蚀坑的直径、深度和蚀除体积都增大,但径深比减少;在相同脉宽下,工件接正极时的电蚀坑的直径、深度和蚀除体积比接负极时更大,但径深比更小;极性蚀除比(工件接负极时的放电坑的体积/工件接正极时的放电凹坑的体积)随着脉宽增加呈现减少的趋势。  相似文献   

3.
混粉电火花加工是一种新型加工工艺,通过在工作液中添加微细粉末,显著改善加工表面粗糙度。电火花加工表面粗糙度的形成与放电蚀坑大小有直接关系,而放电蚀坑大小与单次脉冲放电温度场有密切联系。为了进一步提高混粉加工表面质量,利用ANSYS软件对放电点温度场进行了模拟与分析,得到了工件表层温度场的分布规律,揭示了材料去除机制,阐明了加工表面粗糙度与温度场的关系,对预测和改善混粉加工表面质量及日后生产实际应用提供了一定的理论依据。  相似文献   

4.
建立气中微细电火花沉积加工过程电极材料的热物理模型。利用有限元分析软件ANSYS对单脉冲条件下的工具电极和工件的瞬态温度场进行数值模拟,分析热源形式、初始边界条件和放电能量分配对工具电极和工件材料蚀除形式的影响,并预测适合微细电火花沉积加工的工艺参数。采用仿真预测得到的工艺参数,在高速钢工具表面稳定沉积出直径约200μm、高度约1.2mm的微圆柱结构。对沉积材料微观组织结构的测试分析表明,沉积材料与基体结合紧密。工艺实验和测试分析证明了所建立的微细电火花沉积加工过程的单脉冲放电热物理模型和有限元求解过程的正确性。  相似文献   

5.
针对微细电火花单道扫描加工中电极端部及试件轮廓横截面出现的钝圆现象,给出了其产生的主要影响因素,分析了放电脉冲对正负两极的积分蚀除机理,据此开发了微细电火花单道扫描加工在正负两极的积分蚀除仿真软件,并进行了微细电火花单道扫描加工仿真研究。基于微细组合电加工样机,开展了典型截面形状工具电极的单道扫描加工实验,对工具电极与试件截面轮廓的测量结果表明,放电脉冲在正负两极的积分蚀除作用与多项工艺参数密切相关。  相似文献   

6.
电火花加工的放电蚀除过程是在极短时间内和极微小空间内发生的,导致用观测和理论分析的方法进行研究都极其困难,因此其放电蚀除机理至今仍未能被明确的解释.论文应用分子动力学方法对微细电火花加工的放电蚀除过程和熔融区的形成及形状等进行了模拟研究,该研究基于放电通道变化的热源模型,并与放电通道恒定情况下的模拟结果进行了对比,证明...  相似文献   

7.
为从微观角度研究电火花加工蚀除机制,利用分子动力学方法,基于改进的能量输入方式,采用膨胀的高斯热源模型模拟电火花加工中放电通道的热作用,对微细电火花加工放电凹坑的形成过程和由熔融再凝固层及热影响层组成的表面变质层特性进行了仿真研究。  相似文献   

8.
降低发动机的机械损失一直是研究热点,在摩擦副表面加工微坑,作为改善滑动摩擦的方法已引起了研究者的重视.提出了采用微细圆柱群电极电解加工微坑的工艺方法.以电火花反拷贝的方法制备了直径为250 μm的单排微细圆柱群电极,进行微坑的排电极电解加工工艺实验,获得了平均直径361 μm、深度7.8 μm的摩擦副表面微坑.  相似文献   

9.
提出了一种以电火花加工技术对半导体硅材料进行铣削加工的方法,分别进行了单晶硅和45钢的电火花铣削加工,发现铣削单晶硅的电极体积相对损耗仅为0.41%,而45钢达到9.22%.针对此现象,从蚀除机理、放电间隙以及放电电流的爬坡特性方面对单晶硅放电加工特性进行了研究,并解释了其电极损耗低的原因.最后研究了不同加工规准下,单晶硅电火花铣削加工电极相对损耗的工艺规律.  相似文献   

10.
三维微结构微细电火花和电解组合加工实验研究   总被引:1,自引:0,他引:1  
提出一种微三维结构的微细电火花和微细电化学组合加工工艺,利用三维伺服扫描微细电火花加工快速去除三维型腔材料和微细电解铣削加工形成高精度和高质量三维型腔轮廓表面的互补优势,实现三维微结构的高效率和高精度加工。该组合加工工艺可在同一台微细电加工装置上进行。以在四方体型腔内形成设计尺寸为400μm×400μm×180μm四棱柱结构的加工为例,实验加工出尺寸为410μm×406μm×181μm的四棱柱结构,加工材料的去除速度分别为微细电火花加工31 182μm3/s,微细电解加工11 017μm3/s,得到了加工效率和加工精度的优化组合。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

18.
The motion of melt droplets in spray degassing process was analyzed theoretically. The height of the treatment tank in spray degassing process could be determined by the results of theoretical calculation of motion of melt droplets. To know whether the melt droplets would solidify during spraying process, the balance temperature of melt droplets was also theoretically analyzed. Then proof experiments for theoretical results about temperature of melt droplets were carried. In comparison, the experimental results were nearly similar to the calculation results.  相似文献   

19.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

20.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号