首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Titanium–hydroxyapatite nanocomposites with different HA contents (3, 10, 20 vol%) were produced by the combination of mechanical alloying (MA) and powder metallurgical process. The structure, mechanical and corrosion properties of these materials were investigated. Microhardness test showed that the obtained material exhibits Vickers microhardness as high as 1030 and 1500 HV0.2, which is more than 4–6 times higher than that of a conventional microcrystalline titanium. Titanium nanocomposite with 10 vol% of HA was more corrosion resistant (iC = 1.19 × 10−7 A cm−2, EC = −0.41 V vs. SCE) than microcrystalline titanium (iC = 1.31 × 10−5 A cm−2, EC = −0.36 V vs. SCE). Additionally, the electrochemical treatment in phosphoric acid electrolyte results in porous surface, attractive for tissue fixing and growth. Mechanical alloying and powder metallurgy process for the fabrication of titanium–ceramic nanocomposites with a unique microstructure are developed.  相似文献   

2.
Cu–ZrO2 nanocomposites were produced by the thermochemical process followed by powder metallurgy technique. Microstructure development during fabrication process was investigated by X-ray diffraction, field emission scanning electron microscope and transmission electron microscope. The results show an improved distribution of zirconium dioxide (ZrO2) nanoparticles (45?nm) in the copper matrix, which resulted in the improvement of mechanical properties of Cu–ZrO2 composites. The nanocomposite with 9 wt-% ZrO2 possesses the highest hardness (136.5 HV) and the superior compressive strength (413.5?MPa), resulting in an overall increase by 52 and 25%, respectively. The wear rate of the nanocomposites increased with increasing applied loads or sliding velocity.  相似文献   

3.
Nanocomposites based on natural rubber and nano-sized nickel were synthesized by incorporating nickel nanoparticles in a natural rubber matrix for various loadings of the filler. Structural, morphological, magnetic and mechanical properties of the composites were evaluated along with a detailed study of dielectric properties. It was found that nickel particles were uniformly distributed in the matrix without agglomeration resulting in a magnetic nanocomposite. The elastic properties showed an improvement with increase in filler content but breaking stress and breaking strain were found to decrease. Dielectric permittivity was found to decrease with increase in frequency, and found to increase with increase in nickel loading. The decrease in permittivity with temperature is attributed to the high volume expansivity of rubber at elevated temperatures. Dielectric loss of blank rubber as well as the composites was found to increase with temperature.  相似文献   

4.
A powder mixture of ultrafine –SiC–35 wt% –Si3N4 containing 6 wt% Al2O3 and 4 wt% Y2O3 as sintering additives were liquid–phase sintered at 1800°C for 30 min by hot–pressing. The hot–pressed composites were subsequently annealed at 1920°C under nitrogen–gas–pressure to enhance grain growth. The average grain–size of the sintered bodies were ranged from 96 to 251 nm for SiC and from 202 to 407 nm for Si3N4, which were much finer than those of ordinary sintered SiC–Si3N4 composites. Both strength and fracture toughness of fine–grained SiC–Si3N4 composites increased with increasing grain size. Such results suggested that a small amount of grain growth in the fine–grained region (250 nm for SiC and 400 nm for Si3N4) was beneficial for mechanical properties of the composites. The room–temperature flexural strength and fracture toughness of the 8–h annealed composites were 698 MPa and 4.7 MPa · m1/2, respectively.  相似文献   

5.
6.
The influence of nanoclay on thermal and mechanical properties of hemp fabric-reinforced cement composite is presented in this paper. Results indicate that these properties are improved as a result of nanoclay addition. An optimum replacement of ordinary Portland cement with 1 wt% nanoclay is observed through improved thermal stability, reduced porosity and water absorption as well as increased density, flexural strength, fracture toughness and impact strength of hemp fabric-reinforced nanocomposite. The microstructural analyses indicate that the nanoclay behaves not only as a filler to improve the microstructure but also as an activator to promote the pozzolanic reaction and thus improve the adhesion between hemp fabric and nanomatrix.  相似文献   

7.
8.
Melt-compounding is a technique which has been commonly used for producing polymer–clay nanocomposites with enhanced mechanical, thermal, and physical properties. Twin-screw extruders have been found to effectively exfoliate the clay platelets due to their high shear intensity. However, concerns about polymer and organoclay degradation have been raised in some studies. In this investigation, a composite of nylon 6–Cloisite 30B with fully exfoliated and well-dispersed clay particles was produced using a single-screw extruder and hence with limited polymer degradation. We show that processing temperature plays an important role in enhancing dispersion and that reprocessing at a higher temperature can enhance both dispersion and exfoliation and thus can result in composites with superior properties. We attempt to elucidate how the change in melt viscosity—coupled with the change in processing temperature—affects clay exfoliation and dispersion.  相似文献   

9.
10.
Abstract

Si3N4–TiC nanocomposites are fabricated by hot press sintering from silicon nitride nanopowders and ultrafine TiC powders. The microstructure and mechanical properties are analysed and discussed. Scanning electron microscopy images show that the microstructure consists of equiaxed grains and grain boundary phase. The TiC added as a dispersed phase reacts with the nitrogen from Si3N4 during the liquid phase sintering, with the formation of TiC0.7 N0.3 , trace of SiC and N2. The adding of a proper amount of TiC powders increases the flexural strength and has little influence on fracture toughness. The hardness increases with increasing TiC content.  相似文献   

11.
This paper quantifies how the quality of dispersion and the quality of the interfacial interaction between TiO2 nanoparticles and host polymer independently affect benchmark properties such as glass transition temperature (Tg), elastic modulus and loss modulus. By examining these composites with differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA) and scanning electron microscopy (SEM), we demonstrate changes in properties depending on the adhesive/wetting or repulsive/dewetting interactions the nanoparticles have with the bulk polymer. We further quantify the dispersion of TiO2 nanoparticles in polymethylmethacrylate (PMMA) matrices by a digital–optical method and correlate those values to the degree of Tg depression compared to neat PMMA. Samples with the same weight percent of nanoparticles but better dispersion show larger shifts in Tg.  相似文献   

12.
Silver nanoclusters coated by SiO2 were synthesized by a reverse micelle technique to obtain a core–shell microstructure with tunable particle size less than 50 nm. The refractive indices of the Ag/SiO2 nanocomposites were calculated based on a theoretical model for binary composite materials which illustrated a strong correlation to the size of the metallic core and the dielectric shell. Dynamic light scattering analysis of the Ag/SiO2 nanocomposites revealed that the refractive index of the nanocomposites was about 2.40, which was well in the range predicted by theoretical modeling. Optical absorption spectra and silver quantum dot size induced color change of the Ag/SiO2 nanocomposites suspension were also investigated.  相似文献   

13.
14.
Self-monitoring aligned MWCNT loaded PET composites, with different CNT content, were prepared via twin-screw extrusion starting from a PET/MWCNT masterbatch, and fully characterized. All electrically conductive samples showed self-monitoring ability, i.e. a variation in electrical resistance as a function of stress. Moreover, the insertion of MWCNTs resulted in mechanical reinforcement with respect to neat PET. It was found that both self-monitoring behavior and mechanical performance are directly related to MWCNT content and to the direction of applied stress with respect to CNT orientation. In particular, too high MWCNT content decreased sensitivity at low strain, whereas a minimum MWCNT content was required to insure ohmic conductivity.  相似文献   

15.
Anisotropic 0–3 PZT platelet/polymer composites were prepared by a route involving the tape casting and sintering of PZT sheets and the subsequent alignment of platelets in a polymer matrix by either calendering or tape casting; both techniques induced a strong alignment of the platelets. At 60 vol 1/2 loading, measured d 33- and d h-values of ~ 30 pC N–1 and ~ 100 pC N–1, respectively, were obtained; the calculated g h-value was 83 mV mN–1. A strong relaxation effect observed is considered most likely to be dependent on the characteristics of the polymer phase.  相似文献   

16.
Pb(Zn1/3Ni2/3)c(Ni1/3Nb2/3)a(ZrxTiy)bO3 (PZN–PNN–PZT, the ratios of PNN/PZT a/b were 0.88, 1 and 1.136) piezoelectric ceramics were prepared by a traditional solid-state reaction method. The effects of PNN/PZT ratio on phase structure, microstructure and electric properties as well as the relaxation behaviors of PZN–PNN–PZT ceramics were investigated. The XRD patterns showed that all ceramics samples had a pure perovskite phase structure. Meanwhile, it was found that the phase structure undergoes a tetragonal, tetragonal-rhombohedral to rhombohedral transition as ratios of PNN/PZT increased. With the increasing of a/b from 0.88 to 1.136, the dielectric constant and diffusive phase coefficient decreases, it was indicated that relaxation behaviors also decreased. When ceramics with a/b was 1.136, the dielectric relaxation γ reached the minimum and electrical properties were poor. The electric properties of ceramics with a/b was 1.00 have an excellent properties, it was indicated that ceramics reached an optimization at the MPB structure.  相似文献   

17.
Polyvinylidene fluoride-co-hexaflouropropylene (PVdF–HFP)/TiO2 hybrid nanocomposites membranes for electrical applications have been prepared using a solvent casting technique. The interface between PVdF–HFP and TiO2 was modified using aminopropyltrimethoxysilane (APS) coupling agent. The silane linkages on the TiO2 surface have been confirmed using Fourier transform infra red spectroscopy. WAXD and DSC analysis has been employed to estimate the variation in crystallinity within the membrane as a function of the incorporation of both untreated and APS treated TiO2. The dispersion of both nanoparticles in the PVdF–HFP matrix were characterized by atomic force microscopy and differences were observed in the images of APS treated and untreated. Variation in electrical properties such as conductivity, dielectric constant, dielectric loss and electric modulus of the hybrid composite films were studied employing AC impedance spectroscopy over a range of frequency from 1 kHz to 1 MHz at room temperature. Theoretical models like Maxwell, Faruka, Rayleigh and Lichtenecker were employed to calculate the effective dielectric constant of hybrid nanocomposite membranes and the estimated values were compared with the experimental data. Further, the variation in thermal stability of PVdF–HFP membrane as a function of untreated and silane treated TiO2 reinforcement has been estimated using thermogravimetric analysis.  相似文献   

18.
Cadmium sulfide coated zinc oxide hierarchical nanocomposites have been synthesised at room temperature by a simple solution based method. CdS nanoparticles were deposited on the surface of ZnO without using any surfactant, ligand or chelating agents. The nanocomposites were synthesised using different concentrations of thioacetamide, cadmium salts, and also by varying the reaction time. After characterization of the nanocomposites, optical properties were investigated by UV–visible diffuse reflectance and photoluminescence spectroscopy techniques. It was found that band gap of the ZnO–CdS nanocomposites is tunable between 2.42 and 3.17 eV.  相似文献   

19.
Nanocomposites based on diglycidyl ether of bisphenol A (DGEBA) epoxy reinforced with 1–10 wt% I.30E nanoclay were fabricated using high shear mixing technique and characterized to determine the effects of clay loading on their mechanical, thermal, and water uptake properties. The XRD and TEM analyses revealed that the structures of the resultant nanocomposites were a combination of disordered intercalated and exfoliated morphologies. Tensile strength increased for nanocomposite containing 1 % clay loading and decreased for higher nanoclay loading. Unlike strength, the stiffness increased almost linearly with clay loading, showing 46 % improvement in modulus of elasticity for nanocomposites containing 5 % of nanoclay. Water uptake measurements indicated enhancement in the barrier properties of epoxy matrix as nanoclay loading increased from 1 up to 5 wt%.  相似文献   

20.
This paper reports on the fabrication and characterization of fine scale piezoelectric composites with 1–3 connectivity using fibers derived from a metal alkoxide sol-gel process. Using this technique, pure thickness mode resonance for this type of composite has been increased from 15 MHz up to 70 MHz by maintaining pillar aspect ratio requirements. Piezoceramic fibers of Nb or La modified lead zirconate titanate (PZT) were produced with final diameters ranging from 15 to 50 μm. Composites having 1–3 connectivity were produced using the fibers as pillars. Composites could be fabricated with volume fractions from 10 to 45% allowing tailoring of both the dielectric constant and acoustic impedance without degrading coupling. Dielectric constant, polarization and coercive field values varied slightly from bulk values due to clamping by the polymer matrix, increasing as the fiber diameter decreased. Composites with resonance frequencies ranging from 15 to 70 MHz were studied. The thickness dependence of the properties gave indications to radial mode/thickness mode interactions at pillar aspect ratios near 1.7 to 1 thickness to diameter. Coupling coefficients (kt) from 58% to 73% with mechanical quality factors <15 were detected. Received: 4 April 2000 / Reviewed and accepted: 8 June 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号