首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In conventional TFTs, SiO2 or SiNx have been used as gate insulators. But they could not induce the high on-current due to their low-capacitance. Since they have low-capacitance that originated from low dielectric constant, on-current of TFTs with low-k insulated are limited by low-capacitance. We have investigated high-k materials, such as HfO2, ZrO2 and modified structures for the use of gate insulators in oxide thin film transistors. ZrO2 and HfO2 are the most attractive materials with their superior properties, such as high breakdown field intensity (~ 15 MV/cm), high dielectric constant (~ 25), and the capability of room-temperature process. Since they have high-capacitance due to high dielectric constant, it can be easily expected to result in high on-current. In this work, we demonstrated the comparison of oxide thin film transistors with HfO2, ZrO2 and SiO2 and the roles of gate insulators are analyzed. In the result, oxide thin film transistors with SiO2, HfO2 and ZrO2 have on-currents of ~100 μA, ~500 μA, and ~3 mA, respectively. Especially oxide thin film transistor with ZrO2 has larger on-current than oxide thin film transistor with HfO2. The result means that ZrO2 is more suitable than HfO2 for the gate-dielectric material which can be fabricated at room temperature.  相似文献   

2.
The dramatic scaling down of silicon integrated circuits has led to an intensive study of high dielectric constant materials as an alternative to the conventional insulators currently employed in microelectronics, i.e., silicon dioxide, silicon nitride, or oxynitride, which seem to have reached their physical limit in terms of reduction of thickness due to large leakage gate current. Introducing a physically thicker high-K material can reduce the leakage current to the acceptable limit. There are many potential candidates for high-K gate dielectrics with the K-valves ranging from 9 to 80. These are Al2O3, Y2O3, La2O3, Ta2O5, TiO2, ZrO2 and HfO2. It is important to study the various leakage mechanisms in these films with the aim of improving their leakage current characteristics for use in advanced microelectronics devices. A procedure for calculating the tunneling current for stacked dielectrics is developed and subsequently applied to ultra thin films with equivalent oxide thickness (EOT) of 3.0 nm. Tunneling currents have been calculated as a function of gate voltage for different structures. Direct and Fowler-Nordheim tunneling currents through triple layer dielectrics are investigated for substrate injection. Using exact tunneling transmission calculations, current density–gate voltage (J g?V g) characteristics for ultra thin single layer gate dielectrics with different thicknesses have been shown to agree well with recently reported experiments. Extensions of this approach demonstrate that tunneling currents in HfO2/Al2O3/HfO2 structure with equivalent oxide thickness of 3.0 nm can be significantly lower than that through single layer oxides of the same thickness.  相似文献   

3.
对近空间升华制备的CdTe薄膜进行了CdCl2气氛下热处理。测量了样品在室温下的交流阻抗特性,基于恒相位角元件(CPE)等效电路拟合所测量的复阻抗谱,分析了退火工艺对CdTe薄膜的晶粒体电阻、晶界电阻、弛豫时间的影响。结果表明,随退火温度的增加,晶粒电阻增大,晶界电阻减小,弛豫时间缩短。  相似文献   

4.
The HfO2 gate dielectric films were fabricated by the laser molecular beam epitaxy (LMBE) technique. High-resolution transmission electron microscopy (HRTEM) observation showed that under optimized condition, there is no detectable SiO2 interfacial layer in the as-deposited film and a SiO2 interfacial layer of about 0.4 nm was formed at the Si interface due to the post deposition annealing. Capacitance–voltage (CV) measurement of the film revealed that the equivalent oxide thickness was about 1.3 nm. Such a film showed very low leakage current density of 1.5 × 10−2 A cm−2 at 1 V gate bias from the current–voltage (IV) analysis. The conduction mechanisms as a function of temperature T and electric field E were also systematically studied.  相似文献   

5.
The complex electrical properties of isotropic, electroceramic thin films can be measured with interdigital electrodes, analyzed by impedance spectroscopy (IS). A periodic two-dimensional film/interdigital electrode (IDE) structure was simulated by finite-difference numerical method and a generalized model was developed to characterize the electrical properties of thin films. Variable frequency simulations showed that the film/IDE system can be modeled as a parallel resistor-capacitor equivalent circuit. Equations were developed to extract from the equivalent circuit's fitted resistance and capacitance, the materials properties of the thin film, both conductivity and permittivity. The electrical properties of a polydomain BaTiO3 film grown on a MgO substrate were measured with an IDE structure by IS to demonstrate how the methodology can be readily used.  相似文献   

6.
The increasing constraints in the miniaturization of modern electronic devices is driving the search for new high-k dielectric materials. Rare-earth transition metal oxides are very interesting because of the large values of dielectric constant observed in bulk samples. Here, we report on a comparison among the dielectric properties of yttrium copper titanate (YCTO) thin films and those of commonly used dielectrics such as SiO2 and MgO, grown in similar device structures. The YCTO permittivity was found to depend strongly on the oxygen pressure during deposition and can reach values even higher than those reported in bulk YCTO with good performances in terms of losses.  相似文献   

7.
We report on the nanopatterning by electron beam lithography (EBL) and reactive ion etching (RIE) in a SF6/Ar+ plasma of ultra-thin HfO2 films deposited on GaAs (001) substrates for gate oxide application in next generation III-V metal-oxide-semiconductor field effect transistors (MOSFETs). Characterization of the HfO2/GaAs nanostructured samples by atomic force microscopy (AFM), high-resolution scanning electron microscopy (HRSEM), energy-dispersive X-ray spectroscopy microanalysis (EDX) and transmission electron microscopy (TEM) has shown the formation of well defined HfO2 patterns with nanometre-scale linewidth control and anisotropic profiles. In addition, atomically smooth, stoichiometric and residue-free bottom GaAs etched lines with a lateral dimension of approximately 50 nm have been demonstrated.  相似文献   

8.
Smooth, 4–6-nm thick hafnium oxide films were grown by atomic layer deposition from HfI4 or HfCl4 and H2O on SiO2/Si(1 0 0) substrates at 300 °C. Non-uniform films were obtained on hydrogen-terminated Si(1 0 0). The stoichiometry of the films corresponded to that of HfO2. The films contained small amounts of residual chlorine and iodine. The films deposited on SiO2/Si(1 0 0) were amorphous, but crystallized upon annealing at 1000 °C. In order to decrease the conductivity, the HfO2 films were mixed with Al2O3, and to increase the capacitance, the films were mixed with Nb2O5. The capacitance–voltage curves of the Hf–Al–O mixture films showed hysteresis. The capacitance–voltage curves of HfO2 films and mixtures of Hf–Al–Nb–O were hysteresis free.  相似文献   

9.
10.
High-k gate dielectric HfO2 thin films have been deposited on Si and quartz substrates by radio frequency magnetron sputtering. The structural characteristics, surface morphology, and optical properties of the HfO2/Si gate stacks at various post-annealing temperatures were examined by X-ray diffraction (XRD), atomic force microscopy (AFM), fourier transform infrared spectroscopy (FTIR), ultraviolet–visible spectroscopy (UV–Vis spectroscopy), and spectroscopic ellipsometry (SE). XRD measurement indicates that the 80 W-deposited HfO2 films demonstrate a polycrystalline structure. AFM measurements illustrate that the root mean square of the HfO2 thin films demonstrates an apparent increase with increasing the annealing temperature. Analysis from FTIR indicates that the Si–O–Si bonds vibration peak position shift toward lower wave numbers with increasing the annealing temperature. Combined with UV–Vis spectroscopy and SE measurements, it can be noted reduction in band gap with an increase in annealing temperature has been confirmed. Additionally, increase in refractive index (n) has been confirmed by SE.  相似文献   

11.
C.H. Liu  P.C. Juan 《Thin solid films》2010,518(24):7455-7459
Lanthanum dopant positioning at HfO2 ultra-thin films was achieved by the co-sputtering method. The physical properties of graded doping HfO2/HfLaO/p-Si and HfLaO/HfO2/p-Si structures after 850 °C postannealing were compared. The thickness of the monolayer was analyzed by X-ray reflectivity and confirmed by the multiple beam interference model. The HfO2 and silicate phases were characterized by X-ray diffraction patterns. It is found that crystallization depends on the ratio of stacked film thicknesses, and the HfLaO/HfO2/Si structure has more silicate formation at the interface than the HfO2/HfLaO/Si structure. Metal-insulator-semiconductor capacitors were fabricated. The electrical properties including leakage current, conduction mechanism, flatband voltage shift, and barrier height were studied.  相似文献   

12.
采用射频磁控反应溅射法,以高纯热压HfO2陶瓷为靶材,在Si衬底上成功制备出HfO2薄膜。系统研究了工艺参数对薄膜沉积速率的影响规律,并对薄膜的光学性能进行了研究。结果表明,射频功率对薄膜沉积速率的影响最为明显,O2/Ar流量比和衬底温度对沉积速率的作用不明显,所制备薄膜的折射率较高在近红外波段趋于1.95,在500-1650nm波段范围内薄膜几乎无吸收,透过率较高。  相似文献   

13.
Hydrogen-radical durability of TiO2 thin films has been investigated under conditions for preparing Si thin film solar cells by catalytic chemical vapor deposition method. It is found that the composition and the optical transmittance of TiO2 films are almost the same before and after hydrogen-radical exposures with a filament temperature at approximately 1700 °C and a H2 pressure of approximately 133 Pa. The durability of TiO2 film has also been observed even under the condition with higher hydrogen-radical density under a filament temperature at approximately 1900 °C, in which SnO2 and ZnO are easily deoxidized. The application of TiO2 film as a protecting material of transparent conducting oxide film for Si thin film solar cells are discussed by the hydrogen-radical durability and fundamental properties of TiO2 thin film.  相似文献   

14.
采用激光分子束外延法(LMBE)在P型Si(100)衬底上沉积了(HfO2)x(Al2O3)Y(NiO)1-x-y,栅介质薄膜,研究了其热稳定性以及阻挡氧扩散的能力.X射线衍射表明在HfO2中掺入Ni和Al元素明显提高了其结晶温度.原子力显微镜测试显示:在N2中退火后薄膜表面是原子级平滑连续的,没有发现针孔.900℃N2中退火后的薄膜在高分辨透射电镜下没有发现硅酸盐界面层.实验结果表明在氧化物薄膜与硅衬底之间引入Ni-Al-O置入层能够防止硅酸盐低介电界面层的生成,这有利于MOS晶体管的进一步尺度缩小.  相似文献   

15.
16.
Jeong HY  Kim JY  Kim JW  Hwang JO  Kim JE  Lee JY  Yoon TH  Cho BJ  Kim SO  Ruoff RS  Choi SY 《Nano letters》2010,10(11):4381-4386
There has been strong demand for novel nonvolatile memory technology for low-cost, large-area, and low-power flexible electronics applications. Resistive memories based on metal oxide thin films have been extensively studied for application as next-generation nonvolatile memory devices. However, although the metal oxide based resistive memories have several advantages, such as good scalability, low-power consumption, and fast switching speed, their application to large-area flexible substrates has been limited due to their material characteristics and necessity of a high-temperature fabrication process. As a promising nonvolatile memory technology for large-area flexible applications, we present a graphene oxide based memory that can be easily fabricated using a room temperature spin-casting method on flexible substrates and has reliable memory performance in terms of retention and endurance. The microscopic origin of the bipolar resistive switching behavior was elucidated and is attributed to rupture and formation of conducting filaments at the top amorphous interface layer formed between the graphene oxide film and the top Al metal electrode, via high-resolution transmission electron microscopy and in situ X-ray photoemission spectroscopy. This work provides an important step for developing understanding of the fundamental physics of bipolar resistive switching in graphene oxide films, for the application to future flexible electronics.  相似文献   

17.
This review focuses on the growth and optical properties of amorphous zinc oxide (ZnO) thin films. A high quality ZnO films fabricated by dip-coating (sol–gel) method were grown on quartz and glass substrates at temperature equal to 350 K. The amorphous nature of the films was verified by X-ray diffraction. Atomic Force Microscopy was used to evaluate the surface morphology of the films. The optical characteristics of amorphous thin films have been investigated in the spectral range 190–1100 nm. Measurement of the polarized optical properties was shows a high transmissivity (80–99%) and low absorptivity (<5%) in the visible and near infrared regions at different angles of incidence. Linear optical properties were investigated by classic and Time-Resolved Photoluminescence (TRPL) measurements. Photoluminescence spectrum exhibits a strong ultraviolet emission while the visible emission is very weak. An innovative TRPL technique has enabled the measurement of the photoluminescence decay time as a function of temperature. TRPL measurements reveal a multiexponential decay behavior typical for amorphous thin films. Second and third harmonic generation measurements were performed by means of the rotational Maker fringe technique using Nd:YAG laser at 1064 nm in picosecond regime for investigations of the nonlinear optical properties. The obtained values of second and third order nonlinear susceptibilities were found to be high enough for the potential applications in the optical switching devices based on refractive index changes. Presented spectra confirm high structural and optical quality of the investigated zinc oxide thin films.  相似文献   

18.
In this study, Al thin films deposited on silicon wafers by direct current magnetron sputtering were oxidized under radio frequency 13.56 MHz O2 plasma at temperatures up to 550 °C. During oxidation, plasma powers as well as oxidation temperature and time were varied to investigate the oxidation behavior of the Al films. X-ray photoelectron spectroscopy and Auger electron spectroscopy results show that the apparent alumina could be observed after O2 plasma treatment with powers above 200 W as well as at temperatures above 250 °C. However, no alumina increment could be discerned after individual either heat treatment at 550 °C or plasma treatment at room temperature. The thickness of alumina layers increased remarkably with plasma power and could reach about 60 nm when undergone 400 W O2 plasma treatment at 550 °C for 2 h. Moreover, the thickness of alumina increased parabolically with time during plasma oxidation aided by thermal treatment. The deduced activation energy of such plasma oxidation was 19.1 ± 0.5 kJ/mol.  相似文献   

19.
Of the I-III-VI2 group chalcopyrites, CuInSe2 has already proved its suitability for thin film solar cells owing to its excellent optical and transport properties. CuGaSe2 is expected to exhibit comparable properties from this point of view. With its band gap of 1.7 eV it is a candidate for use in photovoltaic tandem systems.

The preparation of CuGaSe2 thin films by means of the vacuum evaporation of the constituent elements (four-temperature method) is described. The structural, electrical and optical properties of these films were investigated. Secondary electron microscopy, energy-dispersive X-ray analysis, X-ray diffraction examination and measurements of the optical transmission, resistivity and thermoelectric power were used to determine the film properties relative to the preparation parameters and stoichiometry. The growth conditions were optimized for solar cell applications. Heterojunctions were prepared by the in situ evaporation of ZnxCd1−xS onto the CuGaSe2 films. The characteristic data of the cells are a short-circuit current of 6 mA and an open-circuit voltage of 620 mV at an illumination at air mass 1.5 on an area of 1 cm2.  相似文献   


20.
Hsu JC  Wang PW  Lee CC 《Applied optics》2006,45(18):4303-4309
In this study, titanium dioxide (TiO(2)) films were fabricated by cosputtering of a titanium (Ti) target and an aluminum (Al) slice in a smaller area by an ion-beam sputtering deposition method. The sputtered films were postannealed at 450 degrees C. The x-ray photoelectron spectroscopy spectra were categorized by their oxygen bonding variations, which include high-binding-energy oxygen, (HBO), bridging oxygen, low-binding-energy oxygen, and shifts of the binding energies (BEs) of oxygen (O) and Ti signals. The enhancement of HBO and higher BE shifts of the O 1s spectra as a function of cosputtered Al in the film imply the formation of an Al-O-Ti linkage. Corresponding changes in the Ti 2p spectra further confirm the modification of properties of the cosputtered film that results from the variation of the chemical bonding environment. An observed correlation between the chemical structure and optical absorption of the Al cosputtered films can be used to modify the optical properties of the film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号