首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Lesions of the cholinergic nucleus basalis of Meynert elevate the ex vivo synthesis of beta amyloid precursor protein (beta-APP) in the cerebral cortex, a major projection region. We have found that this elevation is reflected by increased levels of beta-APP mRNA. The induction is rapid (occurring 60 min after placement of the lesion) and persistent (remaining for at least 45 days after lesioning). Two other subcortical lesions, which result in reductions of cortical adrenergic and serotonergic innervation, similarly induced cortical beta-APP. The beta-APP induction is reversible and does not require loss of the subcortical neurons. Infusion of lidocaine, a calcium antagonist that disrupts neurotransmitter release, into the nucleus basalis of Meynert leads to the temporary reduction of released acetylcholine in the cortex. In this model, beta-APP mRNA levels are elevated shortly after the infusion of lidocaine (90 min) but return to preinfusion levels 7 days after the lidocaine treatment. However, metabolic stresses of the brain, including chronic physostigmine, glucocorticoid, and diabetogenic treatments, fail to induce the beta-APP response. These results suggest that the induction of beta-APP is a specific response to the loss of functional innervation in the cortex. Importantly, these studies show that cortical beta-APP is induced by lesions that mimic the neurochemical deficits most frequently observed in Alzheimer disease.  相似文献   

2.
Perfringolysin O (theta-toxin) is a cholesterol-binding and pore-forming toxin that shares with other thiol-activated cytolysins a highly conserved sequence, ECTGLAWEWWR (residues 430-440), near the C-terminus. To understand the membrane-insertion and pore-forming mechanisms of the toxin, we evaluated the contribution of each Trp to the toxin conformation during its interaction with liposomal membranes. Circular dichroism (CD) spectra of Trp mutant toxins indicated that only Trp436 has a significant effect on the secondary structure, and that Trp436, Trp438, and Trp439 make large contributions to near-UV CD spectra. Quenching the intrinsic Trp fluorescence of the wild-type and mutant toxins with brominated lecithin/cholesterol liposomes revealed that Trp438 and probably Trp436, but not Trp439, contributes to toxin insertion into the liposomal membrane. Near-UV CD spectra of the membrane-associated mutant toxins indicated that both Trp438 and Trp439 are required for the CD peak shift from 292 to 300 nm, a signal related to theta-toxin oligomerization and/or pore formation, suggesting a conformational change around Trp438 and Trp439 in these processes.  相似文献   

3.
Retrograde degeneration of retinal ganglion cells as a consequence of optic nerve lesion has been shown to fulfil the criteria of apoptosis. In the present study, we investigated the time course of ganglion cell apoptosis following intraorbital crushing of the optic nerve in adult rats using morphological criteria and applying a terminal transferase technique (TUNEL) for in situ detection of DNA strand breaks. In addition, we examined expression patterns of the anti-apoptotic proteins Bcl-2 and Bcl-X and the cell death-promoting protein Bax in retinae after crushing the optic nerve. Apoptotic nuclei were detected in the ganglion cell layer in the first 3 weeks after optic nerve crush, with a peak after 6 days. Bcl-2 and Bcl-X proteins were expressed in ganglion cells at low levels. Expression of Bcl-2 decreased further during the days following crush. Bcl-X expression was initially increased, followed by a decline over the following days. In contrast, Bax protein, which was expressed in most ganglion cells at moderate baseline levels, was sharply increased as early as 30 min after crush, reached peak levels after 3 days, and remained up-regulated for at least 1 week thereafter. Double labelling for Bax and TUNEL in retinal sections, however, did not reveal colocalization of the two signals in individual retinal ganglion cells, consistent with the idea that increases in Bax precede apoptosis after optic nerve lesion. Thus, retinal ganglion cell death might be prevented by ablation of Bax protein in these cells, or by up-regulation of Bax-antagonists such as Bcl-2 or Bcl-X.  相似文献   

4.
In a study of 452 ex-prisoners in England in 1990, 66 people reported that they were tested for HIV antibodies when last in prison. The circumstances under which many of those who were tested were difficult: 36% found it an unpleasant experience, 17% had not taken the test voluntarily and 55% said they received no counselling. Further information was gathered about the experiences of those who were HIV positive or assumed to be. Most were accommodated in a 'special location', not allowed to associate with other prisoners and denied access to work or recreational facilities. These data highlight the difficulties arising from the policy of Viral Infectivity Restrictions, a set of regulations applied to the management of prisoners with HIV in English prisons. This policy created a distressing situation for those tested for HIV or identified as being HIV positive in prison. For the prison environment, these conditions may create a vicious circle reinforcing inaccurate beliefs and anxieties.  相似文献   

5.
We have found that the early response of axotomized rat retinal ganglion cells is characterized by the differential regulation of a number of fast axonally transported proteins. The abundance of 23 radiolabeled fast transported proteins was analyzed at 2 and 5 days after axotomy using two-dimensional gel electrophoresis. Corresponding changes in retinal GAP-43 mRNA were measured using northern analysis. Within 2 days of injury, > 40% of the transported proteins analyzed, including GAP-43, showed increased labeling above control levels. Approximately 13% of transported proteins decreased below control levels, whereas the remainder did not change. Five days after axotomy, only GAP-43 and another fast transported protein, C3, continued to sustain measurable increased labeling above control levels; all previously elevated proteins appeared to have been down-regulated by this time, which corresponds to the onset of cell death. These differential changes were accompanied by parallel increases in GAP-43 mRNA. These results suggest that the molecular changes within rat retinal ganglion cells are differentially regulated within two stages subsequent to damage, initial regenerative growth followed by cell death.  相似文献   

6.
Oligodendrocyte precursor cells (OPCs) persist in substantial numbers in the adult brain in a quiescent state suggesting that they may provide a source of new oligodendrocytes after injury. To determine whether adult OPCs have the capacity to divide rapidly, we have developed a method to highly purify OPCs from adult optic nerve and have directly compared their properties with their perinatal counterparts. When cultured in platelet-derived growth factor (PDGF), an astrocyte-derived mitogen, perinatal OPCs divided approximately once per day, whereas adult OPCs divided only once every 3 or 4 d. The proliferation rate of adult OPCs was not increased by addition of fibroblast growth factor (FGF) or of the neuregulin glial growth factor 2 (GGF2), two mitogens that are normally produced by retinal ganglion cells. cAMP elevation has been shown previously to be essential for Schwann cells to survive and divide in response to GGF2 and other mitogens. Similarly we found that when cAMP levels were elevated, GGF2 alone was sufficient to induce perinatal OPCs to divide slowly, approximately once every 4 d, but adult OPCs still did not divide. When PDGF was combined with GGF2 and cAMP elevation, however, the adult OPCs began to divide rapidly. These findings indicate that adult OPCs are intrinsically different than perinatal OPCs. They are not senescent cells, however, because they retain the capacity to divide rapidly. Thus, after demyelinating injuries, enhanced axonal release of GGF2 or a related neuregulin might collaborate with astrocyte-derived PDGF to induce rapid division of adult OPCs.  相似文献   

7.
In the accompanying paper (Zaidi, S. H. E., Denman, R., and Malter, J. S. (1994) J. Biol. Chem. 269, 24000-24006) we demonstrate that in tumor and normal cells, multiple cytosolic proteins interact with a 29-base sequence in the 3'-untranslated region of amyloid precursor protein (APP) mRNA. These data suggested that APP gene expression may be modulated by regulated APP mRNA decay. We have investigated this prediction by measuring the decay rates of APP mRNA in resting and mitogen-treated peripheral blood mononuclear cells and H4 and K562 tumor cell lines. In resting peripheral blood mononuclear cells, APP mRNA decayed with a half-life of 4 h. Under these conditions, the activity of APP mRNA-binding proteins was not detectable. After activation, binding protein activities were induced, and APP mRNA decay was blocked with a half-life of > 12 h. In log phase neuronal or lymphoid tumor cell lines, binding activity was constitutively present and APP mRNA displayed a half-life of > 12 h. Protein synthesis inhibition by cycloheximide had no effect on APP mRNA decay in normal or tumor cells. Transfected wild type or mutant APP mRNAs that lacked the 29-base region were stable (t1/2 > 10 h) in K562 tumor cells. Therefore, we conclude that the 29-base region functions in cis to destabilize APP mRNA in resting, normal cells. Upon activation APP mRNA-binding proteins are induced, interact with the 29-base region, and likely participate in stabilization of the mRNA.  相似文献   

8.
The severity of pulmonary fibrosis is the main prognostic factor for survival of patients with interstitial lung diseases (ILD). Unfortunately, lung biopsy, which is the best method to assess fibrosis quantitatively, is done only once during the evolution of the disease. In this study we analyzed the relationship between the degree of fibrosis and the exponential constant k, derived from the lung pressure-volume curve (LPVC) in 33 patients with chronic ILD, 19 with pigeon breeder's disease (PBD), and 14 with idiopathic pulmonary fibrosis (IPF). Pulmonary function tests, including the LPVC, were obtained before biopsy. A semiquantitative histologic assessment of the severity of fibrosis was performed on lung tissues. All patients showed a decrease of total lung capacity, residual volume, compliance, and Pao2. The mean value of the constant k was 0.08 +/- 0.06. When expressed as a percent of normal values, 25 patients exhibited values of k lower than 70% of predicted; of the remaining 8 patients whose values were above 70% of predicted, 7 had PBD and only one IPF. On morphologic analysis, 19 patients displayed more than 50% fibrosis. No significant correlations were found between the extent of the lesion or severity of lung fibrosis and the conventional pulmonary function tests. By contrast, a moderate but significant correlation was found between k and the severity of lung fibrosis (r = -0.38, p < 0.05). These findings show that the shape of the LPVC, represented by the constant k, predicts the degree of lung fibrosis and could be useful in the clinical assessment and follow-up of patients with ILD.  相似文献   

9.
The properties of glial cells in lesioned nerves contribute quite substantially to success or failure of axon regeneration in the CNS. Goldfish retinal axons regenerate after optic nerve lesion (ONS) and express the L1-like cell adhesion protein E587 antigen on their surfaces. Goldfish oligodendrocytes in vitro also produce E587 antigen and promote growth of both fish and rat retinal axons. To determine whether glial cells in vivo synthesize E587 antigen, in situ hybridizations with E587 antisense cRNA probes and light- and electron microscopic E587 immunostainings were carried out. After lesion, the goldfish optic nerve/tract contained glial cells expressing E587 mRNA, which were few in number at 6 days after ONS, increased over the following week and declined in number thereafter. Also, E587-immunopositive elongated cells with ultrastructural characteristics of oligodendrocytes were found. Thus, glial cells synthesize E587 antigen in spatiotemporal correlation with retinal axon regeneration. To determine the functional contribution of E587 antigen, axon-oligodendrocyte interactions were monitored in co-culture assays in the presence of Fab fragments of a polyclonal E587 antiserum. E587 Fabs in axon-glia co-cultures prevented the normal tight adhesion of goldfish retinal growth cones to oligodendrocytes and blocked the preferential growth of fish and rat retinal axons on the oligodendrocyte surfaces. The ability of glia in the goldfish visual pathway to upregulate the expression of E587 antigen and the growth supportive effect of oligodendrocyte-associated E587 antigen in vitro suggests that this L1-like adhesion protein promotes retinal axon regeneration in the goldfish CNS.  相似文献   

10.
Axons of adult mammalian retinal ganglion cells (RGCs) do not regenerate spontaneously after injury in the optic nerve and show a persistent decrease in the rate of transport of tubulin and neurofilament proteins. To investigate further the expression of cytoskeletal proteins in these axotomized CNS neurons, mRNA levels of beta-tubulin and the 150 kDa neurofilament subunit (NF-M) were measured after interrupting the optic nerve 9 mm from the eye. Northern blots of RNA extracted from whole retinas after optic nerve transection showed that the total level of both of these mRNAs fell after injury. To determine if this decrease was a result of the death of axotomized RGCs or reflected changes in individual neurons, RNA probes were hybridized to radial cryostat sections of normal and axotomized retinas from 1 d to 6 months after injury. Grain counts revealed two trends of tubulin expression in RGCs. An early increase in tubulin mRNAs in the axotomized RGCs was followed by a later decrease. Such an increase in tubulin mRNA levels has been correlated with regenerative growth in other neurons. By 1 week after injury, the beta-tubulin mRNA levels decreased to 70% of the control value. Moreover, the time of this fall coincided with the onset of a marked slowing of cytoskeletal transport that follows injury in the optic nerve. In contrast, NF-M mRNA levels dropped immediately after axotomy, and remained at 80% of the control level. It is suggested that the transient increase in tubulin mRNAs may reflect an early regenerative response whose persistence depends on further growth cone interactions with the substrate.  相似文献   

11.
Here, we describe a novel mechanism for the rapid regulation of surface levels of the neurotrophin receptor TrkB. Unlike nodose ganglion neurons, both retinal ganglion cells (RGCs) and spinal motor neurons (SMNs) in culture display only low levels of surface TrkB, though high levels are present intracellularly. Within minutes of depolarization or cAMP elevation, surface TrkB levels increase by nearly 4-fold, and this increase is not blocked by cycloheximide. These findings suggest that activity and cAMP elevation rapidly recruit TrkB to the plasma membrane by translocation from intracellular stores. We propose that a fundamental difference between peripheral nervous system (PNS) and central nervous system (CNS) neurons is the activity dependence of CNS neurons for responsiveness to their peptide trophic factors and that differences in membrane compartmentalization of the receptors underlie this difference.  相似文献   

12.
It is well known that glial cells produce several neurotrophic factors. We detected a neurogedegenerative/neurite growth inhibiting activity in serum-free astrocyte-conditioned medium (ACM). After high performance liquid chromatography (HPLC)-purification, spectral analysis and test of biologic activity in tissue cultures of postnatal retinal explants we isolated a fraction containing a riboflavin-(vitamin B2)-like compound which caused the neuronal degeneration. We therefore investigated the influence of pure riboflavin on axonal regeneration in vitro. Riboflavin is a normal compound of Dulbecco's modified Eagle medium (DMEM) and other tissue culture media in various concentrations. The removal of riboflavin from ACM by reversed phase chromatography abolished the neurite growth inhibiting effect and enhanced the regenerative response of axonal outgrowth from postnatal rat retinal explants. However, doubling of the normal medium concentration (1 microM) of riboflavin lead to strong degenerative alteration of the outgrowing axons in a dose-dependent manner, even under maximal growth stimulation by cultivating the explants in astrocyte-conditioned medium. To check the possibility that riboflavin-mediated cytotoxicity is related to the production of free radicals through photoabsorption from daylight, we irradiated culture medium with UV light, and induced radical stress by incubating the explants with Fe2+/3+. In an other set of experiments, we proofed, if antioxidants/free radical scavengers like pyruvate or vitamin C and E are able to overcome the neurite growth inhibiting influence of riboflavin or the radical stress. Our findings suggest an involvement of riboflavin-mediated formation of free radicals/reactive oxygen species and subsequent neurite degeneration in in vitro-assays of neuronal regeneration or neuronal cell cultures. How far the riboflavin/free radical-induced axonal degeneration could be an explanation for neurological degenerative disorders has to be elucidated.  相似文献   

13.
Light microscopic analysis of the optic nerve, chiasm, and optic tracts of Rana pipiens after the anterograde and retrograde transport of horseradish peroxidase has shown that retinal ganglion-cell axons reach the optic nerve head in chronotopically organized fascicles that form bands across the intraocular optic nerve. These bands of fascicles are divided along the midline in a "zone of reorganization" to create two full maps of the retinal surface; however, this map is discontinuous in that nasal and temporal quadrants are adjacent to one another. In the intracranial portion of the optic nerve, axons undergo another reorganization such that peripheral retinal axons shift position and become localized laterally and ventrally, whereas centrally placed axons become localized dorsally. Within this reorganization, the nerve is reconfigured into laminae of axons, and each lamina consists of age-related axons organized into two retinal maps. In the ipsilateral chiasm, axons diverge to form three central, optic tracts: the medial optic tract, the projection to the corpus geniculatum, and the basal optic root. Ipsilateral axons leave the chiasm at the same level of the chiasm as do their contralateral counterparts. The remaining axons converge in the lateral diencephalon to form a fourth fascicle, the marginal optic tract. Thus, within the optic chiasm, a sequence of positional transformations occur that result in the formation of multiple optic pathways. The various changes in axonal trajectory always coincide with changes in the orientation of cell groups that lie within the nerve and optic chiasm.  相似文献   

14.
Whole-cell recordings were obtained from retinal ganglion cells of the tiger salamander (Ambystoma tigrinum) in a superfused slice preparation to evaluate contributions of NMDA (N-methyl-D-aspartate) and KA/AMPA (kainate/alpha-amino-3-hydroxy-5-methyl-4-isoxalone propionic acid) receptors to excitatory postsynaptic potentials (EPSPs) of retinal ganglion cells. Synaptic activation of retinal ganglion cells was achieved through the use of a brief pressure pulse of hyperosmotic Ringer (Ringer + sucrose) delivered through a microelectrode visually placed in the inner plexiform layer while whole-cell recordings were obtained from adjacent cells in the ganglion cell layer. Separation of NMDA and KA/AMPA excitatory postsynaptic currents (EPSCs) was achieved through the application of the antagonists NBQX and D-AP7, while inhibitory currents were blocked by strychnine and picrotoxin. Simple addition of the two independent EPSCs showed, most often, that the sum of the KA/AMPA and NMDA currents was less than the control response, but in some cases the sum of the two currents exceeded the magnitude of the control response. Neither result was consistent with expectations based on voltage-clamp principles and the assumption that the two currents were independent; for this reason, we considered the possibility of nonlinear interactions between KA/AMPA and NMDA receptors. Computer simulations were carried out to evaluate the summation experiments. We used both an equivalent cylinder model and a more realistic, compartmental model of a ganglion cell constrained by a passive leakage conductance, a linear KA/AMPA synaptic current, and a nonlinear NMDA current based on the well-known, voltage-sensitive Mg2+ block. Computer simulation studies suggest that the hypo- and hyper-summation of NMDA and KA/AMPA currents, observed physiologically, can be accounted for by a failure to adequately space clamp the neuron. Clamp failure leads to enhanced NMDA currents as the ion channels are relieved of the Mg2+ block; their contribution is thus exaggerated depending on the magnitude of the conductance change and the spatial location of the synaptic input.  相似文献   

15.
Tat is an 86-amino acid protein involved in the replication of human immunodeficiency virus type 1 (HIV-1). Several studies have shown that exogenous Tat protein was able to translocate through the plasma membrane and to reach the nucleus to transactivate the viral genome. A region of the Tat protein centered on a cluster of basic amino acids has been assigned to this translocation activity. Recent data have demonstrated that chemical coupling of a Tat-derived peptide (extending from residues 37 to 72) to several proteins allowed their functional internalization into several cell lines or tissues. A part of this same domain can be folded in an alpha-helix structure with amphipathic characteristics. Such helical structures have been considered as key determinants for the uptake of several enveloped viruses by fusion or endocytosis. In the present study, we have delineated the main determinants required for Tat translocation within this sequence by synthesizing several peptides covering the Tat domain from residues 37 to 60. Unexpectedly, the domain extending from amino acid 37 to 47, which corresponds to the alpha-helix structure, is not required for cellular uptake and for nuclear translocation. Peptide internalization was assessed by direct labeling with fluorescein or by indirect immunofluorescence using a monoclonal antibody directed against the Tat basic cluster. Both approaches established that all peptides containing the basic domain are taken up by cells within less than 5 min at concentrations as low as 100 nM. In contrast, a peptide with a full alpha-helix but with a truncated basic amino acid cluster is not taken up by cells. The internalization process does not involve an endocytic pathway, as no inhibition of the uptake was observed at 4 degrees C. Similar observations have been reported for a basic amino acid-rich peptide derived from the Antennapedia homeodomain (1). Short peptides allowing efficient translocation through the plasma membrane could be useful vectors for the intracellular delivery of various non-permeant drugs including antisense oligonucleotides and peptides of pharmacological interest.  相似文献   

16.
The amino acid taurine plays an important trophic role during development and regeneration of the central nervous system. Other amino acid systems, such as those for glutamate and gamma-aminobutyric acid (GABA), are modified during the same physiological and pathological processes. After crushing the optic nerve, goldfish retinal explants were plated in the absence and in the presence of different amino acids and amino acid receptor agonists. The length and the density of the neurites were measured at 5 days in culture. Taurine increased the length and the density of neurites. Glutamate and glycine increased them at low concentration, but were inhibitors at higher concentration. The combination of N-methyl-D-aspartate (NMDA) and glycine produced a greater inhibitory effect than NMDA alone. NMDA or alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) added simultaneously with taurine impaired the stimulatory effect of the latter. GABA stimulated the emission of neurites in a concentration dependent manner. Hypotaurine also elevated the length of neurites, but cysteinsesulfinic acid did not produce a significant effect. The concentrations of taurine, glutamate and GABA were determined by HPLC with fluorescent detection in the retina of goldfish at various days post-crushing the optic nerve. The levels of taurine were significantly increased at 48h after the crush, and were elevated up to 20 days. Glutamate level decreased after the lesion of the optic nerve and was still low at 20 days. GABA concentration was not significantly different from the control. The interaction of these amino acids during the regenerative period, especially the balance between taurine and glutamate, may be a determinant in restoring vision after the crush.  相似文献   

17.
The plasma membrane fraction from leaves of tobacco contains a 54-kDa protein with autophosphorylation activity, and the level of this protein increases after feeding of leaves with sucrose [Ohto and Nakamura (1995) Plant Physiol. 109: 973]. The 54-kDa autophosphorylation protein could not be released from the plasma membrane by treatment with salt or alkali but could be efficiently solubilized by 1% sodium deoxycholate (NaDOC). Ion-exchange chromatography of the NaDOC-solubilized proteins in the presence of octylglucoside separated the 54-kDa autophosphorylation protein into three peaks. The autophosphorylation activity of the 54-kDa protein in peaks I and II increased after feeding of leaves with sucrose. The 54-kDa protein in the peak II fraction was enriched about 125-fold starting from the microsomal membrane fraction. The 54-kDa protein in this fraction phosphorylated histone IIIS in a calcium-dependent manner and cross-reacted with an antibody against a calcium-dependent protein kinase (CDPK) of Arabidopsis thaliana. These results suggest that the 54-kDa protein in the peak II fraction is a novel isoform of CDPK which is associated with the plasma membrane and is inducible by sucrose.  相似文献   

18.
To determine whether there are anatomical correlates for intraterminal Ca2+ stores to regulate exocytosis of dense-cored vesicles (DCVs) and whether these stores can modulate exocytosis of synaptic vesicles, we studied the spatial distributions of DCVs, smooth endoplasmic reticulum (SER), and mitochondria in 19 serially reconstructed nerve terminals in bullfrog sympathetic ganglia. On average, each bouton had three active zones, 214 DCVs, 26 SER fragments (SERFs), and eight mitochondria. DCVs, SERFs and mitochondria were located, on average, 690, 624, and 526 nm, respectively, away from active zones. Virtually no DCVs were within "docking" (i.e., < or = 50 nm) distances of the active zones. Thus, it is unlikely that DCV exocytosis occurs at active zones via mechanisms similar to those for exocytosis of synaptic vesicles. Because there were virtually no SERFs or mitochondria within 50 nm of any active zone, Ca2+ modulation by these organelles is unlikely to affect ACh release evoked by a single action potential. In contrast, 30% of DCVs and 40% of SERFs were located within 50 nm of the nonspecialized regions of the plasma membrane. Because each bouton had at least one SERF within 50 nm of the plasma membrane and most of these SERFs had DCVs, but not mitochondria, near them, it is possible for Ca2+ release from the SER to provide the Ca2+ necessary for DCV exocytosis. The fact that 60% of the mitochondria had some part within 50 nm of the plasma membrane means that it is possible for mitochondrial Ca2+ buffering to affect DCV exocytosis.  相似文献   

19.
Fish--in contrast to mammals--regenerate retinal ganglion cell axons when the optic nerve is severed. Optic nerve injury leads to reexpression of proteins, which typically are first expressed in newly differentiated retinal ganglion cells and axons. Here we identified two new proteins of fish retinal ganglion cells, reggie-1 and reggie-2, with monoclonal antibody M802 and molecular cloning techniques. In normal fish, M802 stained the few retinal axons derived from newborn ganglion cells which in fish are added lifelong to the retinal margin. After optic nerve injury, however, M802 labeled all retinal ganglion cells and retinal axons throughout their path into tectum. Consistent with M802 staining, reggie-1 and reggie-2 mRNAs were present in lesioned retinal ganglion cells, as demonstrated by in situ hybridization, but were not detectable in their normal mature counterparts. In western blots with membrane proteins of the adult goldfish brain, M802 recognizes a 48x10(3) Mr protein band. At the amino acid level, 48x10(3) Mr reggie-1 and reggie-2 are 44% identical, lack transmembrane and membrane anchor domains, but appear membrane associated by ionic interactions. Reggie-1 and reggie-2 are homologous to 35x10(3) Mr ESA (human epidermal surface antigen) but are here identified as neuronal surface proteins, present on newly differentiated ganglion cells at the retinal margin and which are reexpressed in mature ganglion cells upon injury and during axonal regeneration.  相似文献   

20.
Promacrophage-stimulating protein (MSP) is an 80-kDa protein that acquires biological activity after cleavage at an Arg-Val bond to a disulfide-linked alpha beta heterodimer by serine proteases of the intrinsic coagulation cascade. These proteases, which include serum kallikrein, factor XIIa and factor XIa, are members of the trypsin family of serine proteases. We now report that two other members of the family, nerve growth factor-gamma (NGF-gamma) and epidermal growth factor-binding protein (EGF-BP), cleave and activate pro-MSP to the disulfide-linked alpha beta heterodimer. Cleavage of 1.5 nM pro-MSP by 1 nM NGF-gamma or EGF-BP at 37 degrees C was almost complete within 30 min. These concentrations of enzyme are about 2 orders of magnitude less than is required for cleavage by serum kallikrein or factor XIIa. Cleavage of pro-MSP to MSP was associated with a conformational change in the protein, because the cleaved product, but not pro-MSP, was detected by a sandwich enzyme-linked immunoassay. Cleavage caused the appearance of biological activity, as measured by chemotactic activity of MSP for resident peritoneal macrophages, by MSP-induced macrophage shape change, and by stimulation of macrophage ingestion of C3bi-coated erythrocytes. These findings suggest the possibility of cooperative interactions between NGF-gamma or EGF-BP and pro-MSP in inflammation and wound healing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号