首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
采用Nb:YAG激光器对高碳高合金钢Cr12进行了表面熔凝处理试验,分析了激光加工参数对熔凝单元体宽度的影响,采用光学显微镜、扫描电镜以及能谱仪分析了激光熔凝处理后Cr12钢单元体的微观组织和化学成分分布,测量了不同激光加工参数下熔凝单元体宽度,并用显微硬度计测试不同区域的微观硬度。结果表明:激光熔凝处理后得到熔凝区、热影响区和基体三层组织。熔凝区组织为极细的等轴晶和柱状晶,消除了夹杂相,合金元素基本均匀分布。热影响区的显微硬度较基体显著提高,熔凝单元体宽度随激光参数的变化呈一定规律性变化,其中离焦量对单元体宽度影响最大。  相似文献   

2.
薄板模具钢脉冲Nd:YAG激光熔凝区显微硬度特征的影响因素   总被引:1,自引:0,他引:1  
本文在厚度为 0 .5— 2 .0mm的 5Cr4Mo3SiMnVAl(0 12Al)模具钢和Cr12MoV模具钢薄板上 ,采用脉冲Nd :YAG激光进行了激光熔凝实验 ,研究了工艺参数 (脉冲宽度和脉冲频率 )、材质和材料厚度对激光熔凝后熔凝层显微硬度特征的影响。结果表明 :随着脉冲宽度的增加或脉冲频率的减少 ,激光熔凝区的显微硬度有减少的趋势 ;Cr12MoV模具钢的激光熔凝区的显微硬度比 0 12Al模具钢的低 ;随着材料厚度的增加 ,激光熔凝区的显微硬度表现为先增加后减少的趋势。激光熔凝工艺参数、材料的热扩散情况和材料的热物性参数的不同是造成上述现象的主要原因。  相似文献   

3.
AZ91镁合金激光表面熔凝处理的微观组织变化   总被引:3,自引:2,他引:1       下载免费PDF全文
为了研究激光处理后镁合金表面组织的变化,采用CO2激光对AZ91镁合金表面以氦气作为保护气体的条件下进行处理,对处理过的试样用光学显微镜进行观察,并用显微硬度计测量其截面的显微硬度值,取得了试样表面和截面的组织照片和沿截面的硬度分布曲线。结果表明,激光处理过的镁合金表面与未经处理的镁合金表面相比晶粒得到了明显的细化,且随着激光扫描速度的降低,晶粒更细,而熔凝层的深度随着速度的增加而减小,同时在细化后的晶粒的晶界上的β相基本上消失,对其截面进行的显微硬度的测量结果显示其硬度相对未处理的试样有明显的提高,且晶粒越小显微硬度值越高,符合Hall-Petch公式。  相似文献   

4.
采用3000W CO2激光器对12Cr2Ni4A钢渗碳淬火表面进行了激光熔凝处理.设计了激光熔凝处理的工艺参数,获得了表面光洁、成形良好的硬化层.研究了渗碳淬火层经激光熔凝处理后的组织特性与显微硬度分布.结果表明,预置TH-1型增强激光吸收涂料的激光熔凝处理能够显著的改善组织,显微硬度可达HV0.21100.研究还发现,激光熔凝处理后的零件表层与内部没有任何裂纹出现.研究结果为激光表面处理修复或强化渗碳淬火零件提供了基础资料.  相似文献   

5.
采用固体YAG脉冲激光对预置一定配比的Ti/B混合粉末涂层进行激光熔覆,在TC4钛合金表面原位合成TiB2陶瓷增强相.利用X射线衍射、金相显微观察以及显微硬度测试等手段,分别对熔覆样品的物相、组织形貌和显微硬度分布特征进行了研究.实验结果表明,激光功率为64W(其中电流140A,脉宽8~10ms,频率12~15Hz),扫描速度1.O~1.2mm/s,离焦量2mm时,可原位生成TiB2陶瓷涂层.金相观察结果表明,熔覆层与基体结合处为波形界面,形成了良好的冶金结合.显微硬度沿截面纵向呈梯度分布,熔覆层的硬度较基底平均提高了3~4倍.  相似文献   

6.
高传玉  周明 《应用激光》2002,22(1):19-22
研究40Cr在激光单道熔凝和叠道熔凝下材料表面显微组织分布特征,表面硬度分布规律和残余应力状态,结果显示单道激光熔凝的强化层组织由表层熔化区、亚表层相变硬化区及与基体相连的高温回火区组成,最大残余应力为拉应力,出现在熔凝带中心,在熔化带边缘为压应力,在热影响区为拉应力:叠道激光熔凝试件表面显微组织和硬度分布的差异在回火软化区和二次淬硬区。。叠道扫描的残余应力要比单道激光熔凝的小,新的熔凝带对前道熔凝带施加了应力并产生了韧化作用。  相似文献   

7.
杨光  刘欢欢  周佳平  钦兰云  王维  任宇航 《红外与激光工程》2017,46(2):206004-0206004(9)
针对某型飞机垂尾梁误加工损伤进行了激光沉积修复研究,根据其服役时受力特点设计了力学性能试样,对不同沉积修复试样及同批锻件基材进行室温静载拉伸对比实验,同时对修复试样显微组织、硬度进行分析及测试。结果表明:沉积修复区组织为细小/片层组织,无明显缺陷,修复区与修复基体形成致密的冶金结合;修复区至修复基体显微硬度分布呈逐步降低的趋势,修复区显微硬度相对修复基体提高约12%;无论修复试样标距中心是否预制孔,修复试样室温静载抗拉强度均高于锻件基材,但塑性比锻件基材略低;同时,在优化垂尾梁修复工艺参数的基础上,对沉积修复试样侧边塌边缺陷产生的原因进行分析并给出解决措施,以期消除塌边缺陷提高修复质量。  相似文献   

8.
采用Nd∶YAG激光对井下作业光纤传感器的SUS304不锈钢外壳进行了焊接.为改进传感器不锈钢外壳封装工艺,满足井下作业环境对传感器不锈钢外壳较高的强度和较好密封性要求,采用正交实验设计方法优化了激光焊接的工艺参数并比较了优化效果.优化的激光焊接参数为电流180A,脉宽3ms,频率30Hz,扫描速度10mm/s.对焊接接头进行了拉伸强度测试、断口分析、金相组织分析、显微硬度分析.结果表明:优化参数的焊接试样质量明显好于未优化参数的试样,其抗拉强度为767.5N/mm2,达到基材抗拉强度的96%,拉伸断裂机制为韧性断裂;焊缝组织没有出现气孔、裂纹等缺陷;焊缝硬度与基材相当,硬度范围为HV0.3230~250.  相似文献   

9.
在BT20钛合金基板上进行了不同激光功率、扫描速度等工艺参数的激光沉积修复试验,研究了各工艺参数对BT20钛合金组织及显微硬度的影响规律,并分析了其成因,为优化工艺参数提高激光沉积修复质量提供依据。结果表明:随着激光功率P的增大,柱状晶的长度变短并趋向于等轴晶的转变; 在相同的激光功率下,随着激光扫描速度v的增大,柱状晶的尺寸变得细长; 基体、热影响区、修复区的显微硬度在修复方向逐渐增大。  相似文献   

10.
激光表面重熔对LY12CZ性能的影响   总被引:3,自引:0,他引:3  
孙福娟  刘洪军  胡芳友 《中国激光》2007,34(8):1159-1162
通过控制CO2连续激光器的有关工艺参数,对LY12CZ铝合金进行了激光表面重熔,并对重熔后的试样进行了疲劳实验、疲劳断口分析、金相分析及显微硬度测试.研究结果表明,LY12CZ铝合金经过激光重熔后,疲劳寿命与未经激光处理试样相比无显著差异,疲劳断口显示疲劳裂纹源区出现在重熔区的表层,疲劳裂纹沿着柱状晶的晶界扩展,在基材处瞬断.激光重熔后表层金相组织明显细化,使得材料表层的显微硬度比基体硬度提高了40%.  相似文献   

11.
采用光纤激光器对316L不锈钢表面进行熔凝处理,研究了熔凝层微观组织演变及其摩擦学性能。结果表明:通过激光熔凝可在316L不锈钢表面获得冶金质量良好、无孔隙裂纹、厚度为500μm的熔凝层。与原始试样相比,激光熔凝处理使其表层从顶部至底部依次形成等轴晶、树枝晶与柱状晶的梯度细化组织,显微硬度提高约73.9%,摩擦因数降低约37.8%,磨损量降低约38.5%,磨损机制从磨粒磨损与黏着磨损转为轻微的磨粒磨损,表明其耐磨损性能经激光熔凝处理后得到明显提升。  相似文献   

12.
为提升YSZ隔热涂层的力学性能,阐明其组织形成过程及机理,优化激光加工工艺参数。方法采用YLS-3000型光纤激光系统利用激光熔覆技术在TC4表面制备了Ti/7YSZ复合涂层体系;通过光学显微镜、扫描电镜、能谱仪、X射线衍射仪和硬度仪分别表征激光熔覆Ti/7YSZ复合热障涂层的宏观形貌、显微组织、元素分布、物相组成及硬度分布。结果在不同激光扫描速度下,熔覆层表面呈不同程度黄色,微观组织均具有“上下细密、中间粗大”特征,其主要由针状α′马氏体、马氏体核心、α相集束、残余β相以及以TiC为代表的MC碳化物构成,Zr元素富集在基体与熔覆区的结合区;随着扫描速度的增加,Zr元素分布愈发不均匀,熔覆区内马氏体混乱、破碎程度加剧,显微硬度先增后减,7mm/s时熔覆层与基体结合良好,硬度水平达到峰值600 HV,达TC4基体的2.5倍,熔覆质量最佳。结论:优化激光扫描速度,可以显著提升熔覆层的质量与综合性能;熔材中Zr元素以ZrO2、ZrC以及固溶形式存在于熔覆区;马氏体间错位滑移阻力、TiC等增强相以及Zr元素固溶强化作用使显微硬度得以提升。  相似文献   

13.
为了研究激光处理后超高碳钢表面组织及性能的变化,采用2kW连续横流CO2激光器对超高碳钢(C的质量分数为0.016)进行了激光处理,采用扫描电镜观察组织和显微硬度计测量深度方向显微硬度值的方法,进行了理论分析和实验验证,取得了沿深度方向的组织照片和硬度分布曲线。结果表明,激光处理层分为熔凝层、过热层和相变硬化层。熔凝层可观察到胞状树枝晶和离异共晶;相变硬化层组织细小,显微硬度(高达750HV~905HV)高于其它层,是典型的激光淬火组织。随激光功率增大(1000W~1200W),熔凝层中胞状树枝晶和离异共晶增多并细化,马氏体数量减少,各层的宽度、深度均增大,显微硬度降低。这一结果对细化超高碳钢组织和改善其性能是有帮助的。  相似文献   

14.
针对汽车发动机缸体、缸套、模具侧壁等垂直表面激光强化的需求 ,研制了垂直面送粉喷嘴和垂直面送粉激光强化系统 ,适合于内侧和外侧垂直面送粉激光熔覆和合金化及不送粉熔凝、相变硬化 ;利用该系统 ,选择合适的激光处理工艺参数 ,在垂直放置的灰铸铁表面进行了激光熔凝、送粉激光合金化、送粉激光熔覆等表面处理 ,分析了处理层的显微组织 ,合金元素成分分布与硬度分布。激光强化显著提高了基材的使用性能。垂直面送粉激光强化技术有良好的工业应用前景。  相似文献   

15.
对TC4钛合金激光增材修复试样进行不同方向的组织、显微硬度及室温拉伸性能分析。结果表明:激光增材修复区为典型的网篮组织,增材高度方向增材区为细密的网篮组织,倾斜方向增材区的网篮组织内包含部分等轴α相,扫描方向试样由于热量累积少,散热快,且靠近结合区,由大量细长α板条以及部分针状α′组成。增材区显微硬度以扫描方向试样为最大,约为345 HV,比增材高度方向和倾斜方向试样高出4.1%;扫描方向试样结合区的显微硬度最高,达到362 HV。不同方向试样室温拉伸性能存在各向异性,扫描方向试样抗拉强度高,塑性略低,增材高度方向和倾斜方向试样抗拉强度低,塑性略高。断口均表现出韧性断裂。  相似文献   

16.
42CrMo钢因具有良好的淬透性、强度以及韧性,被广泛应用于拉矫辊制造中,但是这种材料的耐蚀性、耐磨损性及耐疲劳性还不够理想,限制了拉矫辊连续工作能力。为进一步提高拉矫辊基材强度和耐磨损性能,利用激光熔凝技术对调质后42CrMo钢进行了激光强化工艺研究。采用光学显微镜、金相显微镜、显微硬度计、摩擦磨损试验机等仪器对42CrMo钢激光熔凝后的显微组织、相结构、强度及摩擦磨损性能进行了分析,研究了激光功率、扫描速度对熔凝层性能的影响规律。结果表明:工艺参数对熔凝区力学性能影响较大,激光功率显著影响熔凝层的深度,扫描速度影响表面成形质量;调质后42CrMo钢基体组织主要为回火马氏体+残余奥氏体,经过激光熔凝后,基体组织发生转变,马氏体含量显著提高。  相似文献   

17.
为了进一步提高激光原位熔覆层的质量,利用激光重熔方法对TC4钛合金表面激光原位熔覆层进行了处理。采用扫描电镜(SEM)、X射线衍射仪(XRD)和显微硬度计分别对比研究了熔层的显微组织、相分布和显微硬度。结果表明,适当工艺参数的激光重熔处理可以消除位于原位熔覆层底部的大气孔,可以使熔层中的陶瓷相分布更均匀,从而提高熔层的组织致密性;激光重熔处理后熔层硬度值的梯度变化减弱,熔层的平均显微硬度与质量的稳定性均得到提高。  相似文献   

18.
激光沉积修复BT20合金试验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
采用激光沉积技术对BT20钛合金锻件加工超差及服役损伤进行修复,对修复过程中气孔和熔合不良等缺陷的形成进行了原因分析,并采用了优化工艺参数,对激光熔池施加超声外场等手段,获得无缺陷的修复试样。考察了试样的微观组织和主要合金元素的分布,测量了激光沉积层的显微硬度。结果表明:优化工艺参数后得到的修复组织和基体形成致密的冶金结合,而施加超声外场使修复区的气孔率明显下降;修复试样整体无合金元素的偏析,显微硬度分布从基材到修复区呈递增趋势。  相似文献   

19.
采用纳秒脉冲激光对石化设备普遍使用的20钢表面锈蚀层以及油污进行了激光清洗试验,通过正交实验法得到优化后的激光清洗工艺参数,在激光功率18 W,激光脉冲重复频率75kHz,扫描速度3 000mm/s的清洗工艺参数下可有效去除20钢表面的锈蚀层;在激光功率20 W,激光脉冲重复频率75 kHz,扫描速度2 250 mm/s的清洗工艺参数下可有效去除20钢表面附着的油污。分析了激光清洗前后材料表面形貌的变化,研究了激光清洗前后表面的显微硬度以及耐腐蚀性,结果表明:激光清洗可以在不改变材料的耐腐蚀性能的同时提升材料表面的显微硬度,从而达到理想的激光清洗效果。  相似文献   

20.
基于直接激光金属烧结成形技术,以FGH95镍基高温合金粉末为研究对象,讨论了烧结工艺参数对制件微观组织、体积密度及显微硬度的影响。制件微观组织结构由等轴晶和枝状晶组成,在较高的激光功率、较低的扫描速度和较小的扫描间距时,等轴晶数量减少,尺寸增加,而枝状晶数量多且晶粒细微。制件的体积密度随着激光功率的提高而增大,随着扫描速率和扫描间距的增大而减小;随着激光功率和扫描速度的提高,制件的显微硬度呈先降后升趋势;随着扫描间距的增大,制件的显微硬度呈递增趋势,在到达最大值时有明显的回落。采用激光功率为900 W,扫描速度为0.8 m/min,扫描间距为0.6 mm以及粉层厚度为0.9 mm的参数组合,可获得表面平整、体积密度高、晶粒均匀细小和无明显微观缺陷的制件,其显微硬度可达到477 HV。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号