首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of this study is to prepare ion-imprinted polymers, which can be used for the selective removal of Cr(VI) anions from aqueous media. 4-Vinyl pyridine (4-VP) was used as functional monomer. The Cr(VI)-imprinted poly(4-vinyl pyridine-co-2-hydroxyethyl methacrylate), poly(VP-HEMA), particles were prepared by bulk polymerization. The Cr(VI)-imprinted polymer particles were grained from the bulk polymer, and the template ions (i.e., Cr(VI)) were removed using thiourea (0.5%, v/v) in 0.5M HCl. The Cr(VI)-imprinted polymer contained 21.4 μmol 4-VP/g polymers. The specific surface area of the IIP2 particles was found to be 34.5m(2)/g (size range of 75-150 μm), and the swelling ratio was about to 108%. The effect of initial concentration of Cr(VI) anions, the adsorption rate and the pH of the medium on adsorption capacity of Cr(VI)-imprinting polymer were studied. The maximum experimental adsorption capacity was 3.31 mmol Cr(VI)/g polymer. Under competitive condition, the adsorption capacity of Cr(VI)-imprinted particles for Cr(VI) is 13.8 and 11.7 folds greater than that of the Cr(III) and Ni(II) ions, respectively. The first- and second order kinetics models were estimated on the basis of comparative analysis of the corresponding rate parameters, equilibrium capacity and correlation coefficients. The Langmuir adsorption isotherm model was well described the Cr(VI)-imprinted system and the maximum adsorption capacity (Q(max)) was found to be 3.42 mmol/g. Moreover, the reusability of the poly(VP-HEMA) particles was tested for several times and no significant loss in adsorption capacity was observed.  相似文献   

2.
Macroporous resins containing iminodiacetic acid (IDA) groups (Lewatit TP 207 and Chelex-100) were investigated as a function of concentration, temperature and pH for their sorption properties towards chromium(III). The chromium(III) ions sorbed onto the resin and in the equilibrium concentration were determined by inductively coupled plasma spectrophotometer. The maximum sorption for chromium ions was observed at pH 4.5. Solution pH had a strong effect on the equilibrium constant of Cr(III). The equilibrium constants were 320 and 7 at pH value 4.5 for Lewatit TP 207 and Chelex-100 resin, respectively. The Langmuir isotherm was used to describe observed sorption phenomena. Both the sorbents had high bonding constants with Lewatit TP 207 showing stronger binding. The equilibrium related to adsorption capacity and energy of adsorption was obtained by using plots of Langmuir adsorption isotherm. It was observed that the maximum adsorption capacity of 0.288 mmol of Cr(III)/g for Chelex-100 and 0.341 mmol of Cr(III)/g for Lewatit TP 207 was achieved at pH of 4.5. The rise in temperature caused a slight increase in the value of the equilibrium constant (Kc) for the sorption of chromium(III) ion.  相似文献   

3.
Poly(vinyl pyridine-poly ethylene glycol methacrylate-ethylene glycol dimethacrylate) [poly(VP-PEGMA-EGDMA)] beads with an average size of 30–100 μm were prepared by suspension polymerization. Poly(VP-PEGMA-EGDMA) beads were characterized by swelling studies, scanning electron microscopy (SEM), elemental analysis, Fourier Transform Infrared Spectroscopy (FTIR). The beads with a swelling ratio of 65% were used for the heavy metal removal studies. Chelation capacity of the beads for the selected metal ions, i.e., Pb(II), Cd(II), Cr(III) and Cu(II) were investigated in aqueous media containing different amounts of these ions (5–80 mg/l) and at different pH values (2.0–10.0). The maximum chelation capacities of the poly(VP-PEGMA-EGDMA) beads were 18.23 mg/g for Pb(II), 16.50 mg/g for Cd(II), 17.38 mg/g for Cr(III) and 18.25 mg/g for Cu(II). The affinity order on mass basis was observed as follows: Cu(II) > Pb(II) > Cr(III) > Cd(II). pH significantly affected the chelation capacity of VP incorporated beads. Heavy metal adsorption on the poly(PEGMA-EGDMA) control microspheres was negligible. Regeneration of the chelating beads was easily performed with 0.1 M HNO3. It was shown that these beads can be used effectively for heavy metal removal from aqueous solutions with repeatedly adsorption–desorption operations. These features show that poly(VP-PEGMA-EGDMA) beads are potential candidate sorbent for heavy metal removal.  相似文献   

4.
Copper (II) ion-imprinted porous polymethacrylate micro-particles were prepared. Two functional monomers, methacrylic acid and vinyl pyridine, formed a complex with the template copper ion through ionic interactions. The self-assembled copper/monomer complex was polymerized in the presence of an ethylene glycol dimethacrylate cross-linker by a suspension method. After the imprinting sites were provided through removal of the template, the micro-porous particles, of approximate size 200 μm, were obtained for batch and column separation applications. The chemical structure and morphology of the Cu(II)-imprinted micro-porous particles were analyzed using FTIR, SEM, and BET. The adsorption capacity and adsorption kinetics of the imprinted beads for the template Cu(II) ion were significantly affected by particle size, copper ion concentration, pH, and flow rate of the feed solution. The imprinted particles showed high selectivity for the copper ion over other metal ions such as Ni and Zn. The selectivity of the present imprinted polymers for the copper ion was at least 10 times as high as those from commercial sources.  相似文献   

5.
Uptake of trivalent chromium ions from aqueous solutions using kaolinite   总被引:1,自引:0,他引:1  
The sorption of Cr(III) from aqueous solutions on kaolinite has been studied by a batch technique. We have investigated how solution pH, ionic strength and temperature affect this process. The adsorbed amount of chromium ions on kaolinite has increased with increasing pH and temperature when it has decreased with increasing ionic strength. The sorption of Cr(III) on kaolinite is endothermic process in nature. Sorption data have been interpreted in terms of Freundlich and Langmuir equations. The adsorption isotherm was measured experimentally at different conditions, and the experimental data were correlated reasonably well by the adsorption isotherm of the Langmuir, and the isotherm parameters (q(m) and K) have been calculated as well. The enthalpy change for chromium adsorption has been estimated as 7.0 kJ mol(-1). The order of enthalpy of adsorption corresponds to a physical reaction.  相似文献   

6.
Within their complex structure, agro-waste materials such as sorghum straw (SS), oats straw (OS) and agave bagasse (AB) have functional groups (i.e. carboxyl and phenolic) that play a major role in metals sorption. The advantages of these materials include availability, low-cost, and a reasonable metal sorption capacity. These agro-waste materials were chemically characterized by acid-base titrations and ATR-FTIR analyses in order to determine their functional groups, equilibrium constants, and surface charge distribution. Batch experiments were conducted at pH 3 and 4, at 25 °C and 35 °C to determine the biosorbents chromium (III) sorption capacity. Partially saturated biosorbents were desorbed with HNO3, NaOH, and EDTA at different concentrations and temperatures (25 °C, 35 °C, and 55 °C). Finally, the chromium (III) sorption mechanism was discussed.Agro-waste materials functional groups are associated, in part, to carboxyl and hydroxyl groups: these oxygen-containing sites play an important role in the chromium (III) removal. The maximum chromium (III) sorption capacity was 6.96, 12.97, and 11.44 mg/g at pH 4 for acid-washed SS, OS, and AB, respectively. The chromium (III) sorption capacity decreased at pH 3 because H+ ions competed for the same functional groups. On the other hand, an increase in temperature enhanced both the biosorbents chromium (III) sorption capacity and their desorption by EDTA. The most probable chromium (III) sorption mechanisms were ion exchange and complexation.The agro-waste materials studied herein efficiently remove chromium (III) from aqueous solution and, most importantly, EDTA can efficiently desorb Cr (III) from agro-waste materials at 55 °C.  相似文献   

7.
Local bentonite and expanded perlite (Morocco) have been characterised and used for the removal of trivalent chromium from aqueous solutions. The kinetic study had showed that the uptake of Cr(III) by bentonite is very rapid compared to expanded perlite. To calculate the sorption capacities of the two sorbents, at different pH, the experimental data points have been fitted to the Freundlich and Langmuir models, respectively, for bentonite and expanded perlite. For both sorbents the sorption capacity increases with increasing the pH of the suspensions. The removal efficiency has been calculated for both sorbents resulting that bentonite (96% of Cr(III) was removed) is more effective in removing trivalent chromium from aqueous solution than expanded perlite (40% of Cr(III) was removed). In the absence of Cr(III) ions, both bentonite and expanded perlite samples yield negative zeta potential in the pH range of 2-11. The changes of expanded perlite charge, from negative to positive, observed after contact with trivalent chromium(III) solutions was related to Cr(III) sorption on the surface of the solid. Thus, it was concluded that surface complexation plays an important role in the sorption of Cr(III) species on expanded perlite. In the case of bentonite, cation-exchange is the predominate mechanism for sorption of trivalent chromium ions, wherefore no net changes of zeta potential was observed after Cr(III) sorption. X-ray photoelectron spectroscopy measurements, at different pH values, were also made to corroborate the zeta potential results.  相似文献   

8.
The present study reports the preparation of nanocrystalline cellulose (NCC) with further reinforcement using succination and amination to observe the unexploited sorption efficiency of chromium from water bodies. The increased surface area-to-volume ratio of nanoparticles, quantum size effects, and the ability to tune surface properties through molecular modification make NCC ideal for metal remediation. Novel NCC was also characterized on the basis of XRD and AFM techniques and found to have enough potential for functionalization. Fourier transform infrared spectrometry of functionalized biomass highlights NCC interactions with succination and amination reactions, responsible for sorption phenomenon of chromium. Sorption studies (batch experiments) result into the standardization of optimum conditions for removal of Cr(III) and Cr(VI) as follows: biomass dosage (2.0 g), metal concentration (25 mg/l), contact time (40 min), and volume of the test solution (200 ml) at pH 6.5 and 2.5, respectively. The adsorption data were found to fit both the Freundlich and Langmuir isotherms. The sorption capacity of the regenerated biomass remained almost constant after five cycles of sorption process, suggesting that the lifetime was sufficient for continuous application and was further confirmed by means of TGA analysis. Artificial neural networks model was developed to predict the removal efficiency of Cr(III) and Cr(VI) ions from aqueous solution using functionalized NCC. Back-propagation and Levenberg–Marquardt techniques are used to train various neural network architectures and the accuracy of the obtained models using test data set. The optimal neural network architectures of this process contain 15 and 16 neurons for Cr(III) and Cr(VI) respectively, with minimum mean-squared error for training and cross validation as for Cr(III) 1. 6.46422 × 10?6 and 0.001137496 and for Cr(VI) 1. 30386 × 10?6 and 0.002227835, respectively.  相似文献   

9.
The objective of this work was to propose an alternative use for coffee husks (CH), a coffee processing residue, as untreated sorbents for the removal of heavy metal ions from aqueous solutions. Biosorption studies were conducted in a batch system as a function of contact time, initial metal ion concentration, biosorbent concentration and pH of the solution. A contact time of 72 h assured attainment of equilibrium for Cu(II), Cd(II) and Zn(II). The sorption efficiency after equilibrium was higher for Cu(II) (89-98% adsorption), followed by Cd(II) (65-85%) and Zn(II) (48-79%). Even though equilibrium was not attained in the case of Cr(VI) ions, sorption efficiency ranged from 79 to 86%. Sorption performance improved as metal ions concentrations were lowered. The experimental sorption equilibrium data were fitted by both Langmuir and Freundlich sorption models, with Langmuir providing the best fit (R2>0.95). The biosorption kinetics was determined by fitting first and second-order kinetic models to the experimental data, being better described by the pseudo-second-order model (R2>0.99). The amount of metal ions sorbed increased with the biosorbent concentration in the case of Cu(II) and Cr(VI) and did not present significant variations for the other metal ions. The effect of the initial pH in the biosorption efficiency was verified in the pH range of 4-7, and the results showed that the highest adsorption capacity occurred at distinct pH values for each metal ion. A comparison of the maximum sorption capacity of several untreated biomaterial-based residues showed that coffee husks are suitable candidates for use as biosorbents in the removal of heavy metals from aqueous solutions.  相似文献   

10.
Preparation of crosslinked copolymer beads based on glycidyl methacrylate (GMA), 2-hydroxyethyl methacrylate (HEMA), and divinyl benzene for the use of heavy metal adsorption has been investigated. In our study, a series of porous copolymer beads were synthesized by suspension polymerization in the presence of porogens, 1-dodecanol, toluene, and heptane at different dilutions. The effect of the porogens on the surface appearance and the porous structure of copolymer beads was studied by scanning electron microscopy and BET method. Diethylene triamine chelating copolymers were obtained through a reaction between amine groups of diethylene triamine and epoxide pendant groups of GMA. Adsorption isotherm and quantitative analysis for adsorption capacity involving copper, chromium, manganese, cadmium, iron, and zinc ions were investigated using atomic absorption spectrophotometer. The adsorption was a function of types of metal ions, adsorption time, and solution properties including pH and metal concentration. Adsorption equilibrium was achieved in approximately 50 min with a maximum adsorption capacity at pH 5.0. The Langmuir isotherm was found to be well fitted on the adsorption behavior. The maximum metal adsorption capacities in single ion solution in mole basis were in the order Cu(II) > Cr(VI) > Mn(II) > Zn(II) > Cd (II) > Fe(II). It was found that introducing porogen in the polymerization mixture produced the copolymer beads with better adsorption capacity. The maximum Cu(II) adsorption capacity of chelating poly(GMA-co-HEMA) beads were 1.35 mmol/g (85.79 mg/g) measured from the beads prepared in the presence of 1-heptane with 50% dilution. Consecutive adsorption–desorption experiments showed that crosslinked poly(GMA-co-HEMA) micro-beads can be reused almost without any change in the adsorption capacity.  相似文献   

11.
The adsorption of Pb(II) ions from aqueous solution by different pectin compounds was studied in a batch sorption system. Water-soluble low- and high-esterified pectins and insoluble calcium pectate beads were investigated. The lead-binding capacity of all pectin compounds was highest within the pH range from 7 to 8. The binding capacities and rates of Pb(II) ions by pectin compounds were evaluated. The Langmuir, Freundlich and BET sorption models were applied to describe the isotherms and isotherm constants. Sorption isothermal data could be well interpreted by the Langmuir model. These results obtained through the study suggest that pectin compounds are favorable sorbers. The largest amount of Pb(II) ions were bound by pectin with the low degree of esterfication. Therefore, pectin substances may be considered as perspective for sorption and removal of Pb(II) ions from wastewaters.  相似文献   

12.
Two samples of macroporous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate), poly(GMA-co-EGDMA), were synthesized by suspension copolymerization and modified with amines. Initial poly(GMA-co-EGDMA), and the samples modified with ethylene diamine [poly(GMA-co-EGDMA)-en], diethylene triamine [poly(GMA-co-EGDMA)-deta] and triethylene tetramine [poly(GMA-co-EGDMA)-teta], were characterized by mercury porosimetry, FTIR spectroscopy and elemental analysis. The most pronounced increase of specific surface area (75%) was observed for poly(GMA-co-EGDMA)-teta sample with smaller particles (D < 150 μm). The Cu(II) sorption was rapid, depending on porosity of amino-functionalized samples and ligand type. For poly(GMA-co-EGDMA)-deta and poly(GMA-co-EGDMA)-teta sorption half time required to reach 50% of total sorption capacity, t 1/2, were around 3 min. Sorption capacities for Cu(II), Co(II), Cd(II) and Ni(II) as well as for Cr(VI), Co(II), Cd(II) and Ni(II) ions were determined under competitive conditions as a function of pH, ligand type and porosity at room temperature. The results indicate selectivity of poly(GMA-co-EGDMA)-deta for Cu(II) over Cd(II) of 3:1 and for Cu(II) over Ni(II) and Co(II) of 6:1. The decrease in particle size of poly(GMA-co-EGDMA)-teta caused the increase of sorption capacities for all metal ions. At pH 1.8 the selectivity of poly(GMA-co-EGDMA)-teta with smaller particles for Cr(VI) over Ni(II), Co(II) and Cd(II) ions was 8.5:1.  相似文献   

13.
A new acrylic anion exchanger with both tertiary and quaternary ammonium as well as ketone groups in the structural unit has been prepared by the nucleophilic substitution reaction of aminolyzed vinylacetate:acrylonitrile:divinylbenzene copolymer of porosity structure in the swelling state with 2-chloroacetone as a halogenated compound. The new compound exhibits better qualities of strong base exchange capacity than the weak base anion exchangers. The obtained acrylic anion exchanger was used to remove Cr(VI) from the aqueous solution. Batch adsorption studies have been carried out to determine the effect of contact time, concentration of hexavalent chromium in the solution and pH on the sorption capacity. The kinetic parameters were determined on the basis of the static results. The thermodynamic parameters of Cr(VI) sorption process on the anion exchanger were calculated based on the Langmuir and Freundlich isotherms. Sorption was studied in the pH range of 1.5-7 and it was found that it depends on the solution acidity. At the pH values of 3.5 and 7 the anion exchanger exhibited large values of chromium sorption capacity. The speciation of chromium was investigated in the studied pH range by the Diffuse Reflectance Spectroscopy (DRS) method. Reduction of chromium(VI) to chromium(III) under acidic conditions was observed. The performed acrylic strong base anion exchanger is superior compared to the conventional one based on the styrene:divinylbenzene matrix due to its ability for reposition of the long spacer arm for providing exchange sites, hydrophilic character of matrix, and possible hydrogen bonds provided by carbonyl functional groups.  相似文献   

14.
Removal of chromium (III) from aqueous solutions by leonardite (a low-cost adsorbent) was studied in a series of batch experiments. Stabilization of the adsorbent material with alginate beads was also investigated. The extent of adsorption was evaluated as a function of the solution pH, contact time, and the adsorbate concentration. Cr(III) removal was pH dependent, reaching a maximum at a pH range of 4–5. Kinetic studies allowed gives relevant information regarding mass transfer processes involved during the sorption process. Equilibrium data fitted well to both the Langmuir and Freundlich isotherm models and the maximum adsorption capacity turned out to be 75.2 mg Cr(III) g?1. Encapsulation of leonardite in alginate beads resulted in a slightly lower adsorption capacity.  相似文献   

15.
It is important to assess the effects of ionic strength when studying adsorption of metal ions on clay mineral because the background salt may complex metals and compete for adsorption sites. The sorption behavior of vermiculite pure clay mineral has been studied with respect to copper and chromium as a function of ionic strength in single metal ion solutions. Background electrolytes used in these experiments were KCl, NaCl and NH4Cl. The studies were conducted by a batch method at temperature 25 °C. The adsorption capacity and adsorption energy for each metal ion were calculated from the Langmuir adsorption isotherm.Also the competitive adsorption behavior of some heavy metal ions such as Cr(III), Cu(II), Ni(II) and Co(II) by vermiculite pure clay mineral was studied. The result shows the competition between coexisting heavy metal cations for the same adsorption sites of an adsorbent. However, when trivalent metal was added to the solution it competitively replaced divalent ions that had been previously adsorbed onto the vermiculite pure clay mineral, resulting in the desorption of these metals into the solution.  相似文献   

16.
The paper presents results of studies carried out on sorption of Cr(III) ions from aqueous solutions by eggshells as a low-cost sorbent. It was found that crushed eggshells possess relatively high sorption capacity, when comparing with other sorbents, that was evaluated as 21-160 mg/g. The effect of process parameters: pH, temperature, initial concentration of Cr(III) ions on the process kinetics was studied. It was found that the equilibrium of the process was reached after 60 min. Also equilibrium studies were performed: the effect of sorbent concentration and equilibrium Cr(III) concentration was studied. The maximum experimentally determined sorption capacity 160 mg/g was obtained at low sorbent concentration at 20 degrees C and pH 5. It was found that sorption capacity increased with the increase of Cr(III) concentration, temperature and sorbent concentration. Mathematical models describing kinetics and equilibrium of sorption were proposed. The process kinetics was described with pseudo-second-order pattern and equilibrium was described with Langmuir-type equation, and the influence of sorbate concentration, with an empirical dependence. The models were positively verified. Eggshells were able to remove the concentration of Cr(III) ions below the acceptable level, i.e. at 40 degrees C, at the initial concentration of metal ions 100 mg/kg, at sorbent concentration 15 g/l.  相似文献   

17.
Adsorption isotherms of chromium ions in aqueous solution have been experimentally measured on a granular activated carbon (GAC) and on a char of South African coal (CSAC). Experimental results show that the adsorption capacity for the GAC strongly depends on solution pH and salinity, with maximum values around 7mg/g at neutral pH and low salinity levels. On the contrary, the CSAC shows a smaller adsorption capacity, near 0.3mg/g, which slightly decreases by increasing pH and salinity levels. Chromium adsorption mainly depends on the availability of chromium ions in solution and on the occurrence of redox reactions between the surface groups and the Cr(VI) which lead to the formation of Cr(III). The reduction of Cr(VI) and the following sorption of Cr(III) cations appears as the leading mechanism for chromium uptake on the CSAC. A similar behaviour can be observed for the GAC at pH below 3. On the contrary, at pH>7, the multicomponent competitive adsorption of Cr(VI), OH(-) and Cl(-) has to be considered.  相似文献   

18.
The capability of 14 zeolites synthesized from different fly ashes (ZFAs) to sequestrate Cr(III) from aqueous solutions was investigated in a batch mode. The influence of pH on the sorption of Cr(III) was examined. ZFAs had a much greater ability than fly ash to remove Cr(III), due to the high cation exchange capacity (CEC) and the high acid neutralizing capacity (ANC) of ZFAs. The mechanism of Cr(III) removal by ZFAs involved ion exchange and precipitation. A high-calcium content in both the fly ashes and ZFAs resulted in a high ANC value and, as a result, a high immobilization capacity for Cr(III). The pH strongly influenced Cr(III) removal by ZFAs. Inside the solubility range, removal of chromium increased with increasing pH. Hydroxysodalite made from a high-calcium fly ash had a higher sorptive capacity for Cr(III) than the NaP1 zeolite from medium- and low-calcium fly ashes. On the other hand, at pH values above the solubility range, the efficiency of chromium removal by the ZFAs approached 100% due to the precipitation of Cr(OH)3 on the sorbent surfaces. It is concluded that ZFAs and high-calcium fly ashes may be promising materials for the purification of Cr(III) from water/wastewater.  相似文献   

19.
Sorption of Cd(2+), Cr(3+), Cu(2+), Ni(2+), Pb(2+) and Zn(2+) onto a carboxyl groups-rich material prepared from lemon was investigated in batch systems. The results revealed that the sorption is highly pH dependent. Sorption kinetic data indicated that the equilibrium was achieved in the range of 30-240 min for different metal ions and sorption kinetics followed the pseudo-second-order model for all metals studied. Relative sorption rate of various metal cations was found to be in the general order of Ni(2+)>Cd(2+)>Cu(2+)>Pb(2+)>Zn(2+)>Cr(3+). The binding characteristics of the sorbent for heavy metal ions were analyzed under various conditions and isotherm data was accurately fitted to the Langmuir equation. The metal binding capacity order calculated from Langmuir isotherm was Pb(2+)>Cu(2+)>Ni(2+)>Cd(2+)>Zn(2+)>Cr(3+). The mean free energy of metal sorption process calculated from Dubinin-Radushkevich parameter and the Polanyi potential was found to be in the range of 8-11 kJ mol(-1) for the metals studied showing that the main mechanism governing the sorption process seems to be ion exchange. The basic thermodynamic parameters of metals ion sorption process were calculated by using the Langmuir constants obtained from equilibration study. The DeltaG degrees and DeltaH degrees values for metals ion sorption on the lemon sorbent showed the process to be spontaneous and exothermic in nature. Relatively low DeltaH degrees values revealed that physical adsorption significantly contributed to the mechanism.  相似文献   

20.
Trivalent and hexavalent chromium have been successfully separated and estimated from different solutions using 1-(3,4-dihydroxybenzaldehyde)-2-acetylpyridiniumchloride hydrazone (DAPCH) loaded on Duolite C20 in batch and column modes. The obtained modified resin [DAPCH-Duolite C20] was identified by C, H and N analyses and infrared spectra. The presence of multi-active chelating sites gives the ability for DAPCH to bind more chromium, Cr(III) by forming stable complex and chromate by forming ion pair molecule [H(2)DAPCH-Duolite C20](2+)[Cr(2)O(7)](2-) (H(2)DAPCH-Duolite C20 is the protonated form in acidic medium). The extraction isotherms were measured at different pH. The pH was found to be the backbone for the separation procedure in which the Cr(VI) and Cr(III) ions are sorbed selectively from aqueous solution at pH 2 and 6, respectively. The sorbed ions can be eluted using different concentrations of HCl. The saturation sorption capacity (41.6 and 20.05 mg g(-1)), the preconcentration factor (150 and 200) and the detection limit (13.3 and 10.0 ppb) were calculated for Cr(III) and (VI). The loaded resin can be regenerated for at least 50 cycles. The utility of the modified resin was tested in aqueous samples and shows R.S.D. value of <4% reflecting its accuracy and reproducibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号