共查询到20条相似文献,搜索用时 15 毫秒
1.
在利用分子束外延方法制备Si Ge p MOSFET中引入了低温Si技术.通过在Si缓冲层和Si Ge层之间加入低温Si层,提高了Si Ge层的弛豫度.当Ge主分为2 0 %时,利用低温Si技术生长的弛豫Si1 - x Gex 层的厚度由UHVCVD制备所需的数微米降至4 0 0 nm以内,AFM测试表明其表面均方粗糙度(RMS)小于1.0 2 nm.器件测试表明,与相同制备过程的体硅p MOSFET相比,空穴迁移率最大提高了2 5 % . 相似文献
2.
应变SiGe沟道pMOSFET的击穿特性 总被引:1,自引:0,他引:1
以半导体器件二维数值模拟程序Medici为工具,模拟和对比了SiGepMOS同SipMOS的漏结击穿电压随栅极偏压、栅氧化层厚度和衬底浓度的变化关系;研究了SiGepMOS垂直层结构参数硅帽层厚度、SiGe层厚度及Ge剂量和p+ δ掺杂对于击穿特性的影响.发现SiGepMOS击穿主要由窄带隙的应变SiGe层决定,击穿电压明显低于SipMOS并随Ge组分增加而降低;SiGe/Si异质结对电场分布产生显著影响,同SipMOS相比电场和碰撞电离具有多峰值分布的特点;Si帽层及SiGe层参数对击穿特性有明显影响,增加p型δ掺杂后SiGepMOS呈现穿通击穿机制 相似文献
3.
以半导体器件二维数值模拟程序Medici为工具,模拟和对比了SiGe pMOS同Si pMOS的漏结击穿电压随栅极偏压、栅氧化层厚度和衬底浓度的变化关系;研究了SiGe pMOS垂直层结构参数硅帽层厚度、SiGe层厚度及Ge剂量和p+ δ掺杂对于击穿特性的影响.发现SiGe pMOS击穿主要由窄带隙的应变SiGe层决定,击穿电压明显低于Si pMOS并随Ge组分增加而降低;SiGe/Si异质结对电场分布产生显著影响,同Si pMOS相比电场和碰撞电离具有多峰值分布的特点;Si帽层及SiGe层参数对击穿特性有明显影响,增加p型δ掺杂后SiGe pMOS呈现穿通击穿机制. 相似文献
4.
5.
6.
7.
针对S i/S iG e p-M O SFET的虚拟S iG e衬底厚度较大(大于1μm)的问题,采用低温S i技术在S i缓冲层和虚拟S iG e衬底之间M BE生长低温-S i层。S iG e层应力通过低温-S i层释放,达到应变弛豫。XRD和AFM测试表明,S i0.8G e0.2层厚度可减薄至300 nm,其弛豫度大于85%,表面平均粗糙度仅为1.02 nm。试制出应变S i/S iG e p-M O SFET器件,最大空穴迁移率达到112 cm2/V s,其性能略优于目前多采用1μm厚虚拟S iG e衬底的器件。 相似文献
8.
9.
10.
通过求解泊松方程,综合考虑短沟道效应和漏致势垒降低效应,建立了小尺寸S iG e沟道pM O SFET阈值电压模型,模拟结果和实验数据吻合良好。模拟分析表明,当S iG e沟道长度小于200 nm时,阈值电压受沟道长度、G e组份、衬底掺杂浓度、盖帽层厚度、栅氧化层厚度的影响较大。而对于500 nm以上的沟道长度,可忽略短沟道效应和漏致势垒降低效应对阈值电压的影响。 相似文献
11.
为制作应变硅MOS器件,给出了一种制备具有高表面质量和超薄SiGe虚拟衬底应变Si材料的方法。通过在Si缓冲层与赝晶Si0.8Ge0.2之间设置低温硅(LT-Si)层,由于失配位错限制在LT-Si层中且抑制线位错穿透到Si0.8Ge0.2层,使表面粗糙度均方根值(RMS)为1.02nm,缺陷密度系106cm-2。又经过P+注入和快速热退火,使Si0.8Ge0.2层的应变弛豫度从85.09%增加到96.41%,且弛豫更加均匀。同时,RMS(1.1nm)改变较小,缺陷密度基本没变。由实验结果可见,采用LT-Si层与离子注入相结合的方法,可以制备出满足高性能器件要求的具有高弛豫度、超薄SiGe虚拟衬底的高质量应变Si材料。 相似文献
12.
13.
14.
低温制备应变硅沟道MOSFET栅介质研究 总被引:1,自引:0,他引:1
分别对300 °C下采用等离子体增强化学气相淀积(PECVD)和700 °C下采用热氧化技术制备应变硅沟道MOS器件栅介质薄膜进行了研究.采用PECVD制备SiO2栅介质技术研制的应变硅沟道PMOSFET(W/L=20 μm/2 μm)跨导可达45 mS/mm(300 K), 阈值电压为1.2 V;在700 °C下采用干湿氧结合,制得电学性能良好的栅介质薄膜,并应用于应变硅沟道PMOSFET(W/L=52 μm/4.5 μm)器件研制,其跨导达到20mS/mm(300 K),阈值电压为0.4 V. 相似文献
15.
提出一种应变Si/SiGe UMOSFET结构,并与Si-UMOSFET器件的电流-电压特性进行比较;对SiGe区域在UMOSFET器件中的不同厚度值进行静态电学仿真。应变Si/SiGe异质结能够有效地提高沟道区载流子的迁移率,增大IDS,降低Vth及器件的Ron;且应变异质结与载流子有效传输沟道距离的大小,对器件的Vth、Isat、V(BR)DSS及电流-电压特性都有较大的影响。因此在满足击穿电压要求的基础上,应变Si/SiGe沟道异质结的UMOSFET相对Si-UMOSFET在I-V特性和Ron方面有较大的改进。 相似文献
16.
采用解析的方法计算了少数载流子浓度与Ge组分x、温度T以及掺杂浓度N的关系。发现常温时,在同一掺杂浓度下,少子浓度随Ge组分的增加而增大,其增加的速度越来越快;在同一Ge组分下,少子浓度随掺杂浓度的增加而减少,其减少的速度越来越慢。低温下,在考虑杂质不完全电离的同时,对由非简并情形向简并情形过渡的杂质电离出来的空穴浓度进行了修正,发现在同一Ge组分下,少子浓度随掺杂浓度的增加而增大,其增加的速度变得越来越快。同一掺杂浓度下,少子浓度随Ge组分的增加而增大,其增加的速度,轻掺杂时增加的较慢,重掺杂时增加得越来越快。 相似文献
17.
建立了一种基于硅/锗硅异质结构的应变硅NMOS晶体管的有限元模型,通过模拟研究了沟道区的应变分布及其与器件参数的关系。结果表明,提高锗硅虚拟衬底中锗的摩尔组分、减小应变硅层厚度,可以增加沟道应变。此外,应变量还随器件结构长度的增加而增加。研究结果可为应变硅器件的设计、工艺优化提供参考依据。 相似文献
18.
利用低温生长Si缓冲层与Si间隔层相结合的方法生长高弛豫SiGe层,研究了Si间隔层在其中的作用. 利用化学腐蚀和光学显微镜,观察了不同外延层厚度处位错的腐蚀图样. 研究了不同温度下生长的Si间隔层对SiGe外延层中位错形成、传播及其对应变弛豫的影响. 结果表明Si间隔层的引入,显著改变了外延层中位错的形成和传播,进而使得样品表面形貌也呈现出较大的差异. 相似文献
19.
利用低温生长Si缓冲层与Si间隔层相结合的方法生长高弛豫SiGe层,研究了Si间隔层在其中的作用.利用化学腐蚀和光学显微镜,观察了不同外延层厚度处位错的腐蚀图样.研究了不同温度下生长的Si间隔层对SiGe外延层中位错形成、传播及其对应变弛豫的影响.结果表明Si间隔层的引入,显著改变了外延层中位错的形成和传播,进而使得样品表面形貌也呈现出较大的差异. 相似文献
20.
利用低温生长Si缓冲层与Si间隔层相结合的方法生长高弛豫SiGe层,研究了Si间隔层在其中的作用.利用化学腐蚀和光学显微镜,观察了不同外延层厚度处位错的腐蚀图样.研究了不同温度下生长的Si间隔层对SiGe外延层中位错形成、传播及其对应变弛豫的影响.结果表明Si间隔层的引入,显著改变了外延层中位错的形成和传播,进而使得样品表面形貌也呈现出较大的差异. 相似文献