首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was conducted to investigate the structural characterisation of β‐cyclodextrin (β‐CD) crosslinked by adipic acid. β‐CD was treated with different concentrations (0%, 5%, 10% and 15%, w/v) of adipic acid. Different instruments, such as scanning electron microsope (SEM), Fourier‐transform infrared (FT‐IR) spectroscopy and 1H and 13C nuclear magnetic resonance (NMR) spectra were used to find out chemical structure in the crosslinked β‐CD. SEM analysis suggested that crosslinking β‐CD with 15% adipic acid changed the original morphology and considerably increased the particle size of the raw material. FT‐IR spectroscopy data showed that an intensive absorption band at 1706 cm?1 was present in the β‐CD samples treated with 10% and 15% adipic acid, indicating a crosslinking between hydroxyl groups of β‐CD and carboxyl groups of adipic acid. NMR spectra revealed that the ester linkages between hydroxyl groups of β‐CD and carboxyl groups of adipic acid were formed after crosslinking of β‐CD with adipic acid.  相似文献   

2.
The aim of this study was to produce and evaluate a soft cheese fortified with zinc and with cholesterol‐reduced content. To meet this objective, a cream base was prepared, from which cholesterol was removed using β‐cyclodextrin as extracting agent. Then, cholesterol‐reduced content cheese with and without the addition of zinc salts (ZnSO4 or ZnCl2) was produced. Additionally, a cheese without any treatment was prepared. Furthermore, physicochemical, textural, functional, microstructural and sensory determinations were performed. As a result, 87–94% zinc‐fortified and 93% cholesterol‐reduced cheese samples were obtained, which had similar sensorial characteristics to the cheese without treatment.  相似文献   

3.
Polydatin is the main bioactive ingredient in many medicinal plants, such as Hu‐zhang (Polygonum cuspidatum), with many bioactivities. However, its poor aqueous solubility restricts its application in functional food. In this work, 6‐O‐α‐Maltosyl‐β‐cyclodextrin (Malt‐β‐CD), a new kind of β‐CD derivative was used to enhance the aqueous solubility and stability of polydatin by forming the inclusion complex. The phase solubility study showed that polydatin and Malt‐β‐CD could form the complex with the stoichiometric ratio of 1:1. The supermolecular structure of the polydatin/Malt‐β‐CD complex was characterized by ultraviolet–visible spectroscopy (UV), Fourier transform infrared spectroscopy (FT‐IR), X‐ray diffractometry (XRD), thermogravimetric/differential scanning calorimetry (TG/DSC), and proton nuclear magnetic resonance (1H‐NMR) spectroscopy. The changes of the characteristic spectral and thermal properties of polydatin suggested that polydatin could entrap inside the cavity of Malt‐β‐CD. Furthermore, to reasonably understand the complexation mode, the supermolecular structure of polydatin/Malt‐β‐CD inclusion complex was postulated by a molecular docking method based on Autodock 4.2.3. It was clearly observed that the ring B of polydatin oriented toward the narrow rim of Malt‐β‐CD with ring A and glucosyl group practically exposed to the wide rim by hydrogen bonding, which was in a good agreement with the spectral data.  相似文献   

4.
Peptide extract from Brie cheese was examined. The opioid peptide was isolated from the extract. Its amino acid composition and N- and C-terminal amino acids were determined. Based on these analyses, the isolated peptide was assumed to correspond to β-casomorphin-7 (Tyr-Pro-Phe-Pro-Gly-Pro-IIe). The opioid activity was measured by examining the effects of peptide extract and isolated opioid peptide on the motor activity of isolated rabbit intestine. © 1999 Society of Chemical Industry  相似文献   

5.
The finding of new isolates of non‐Saccharomyces yeasts, showing beneficial enzymes (such as β‐glucosidase and β‐xylosidase), can contribute to the production of quality wines. In a selection and characterization program, we have studied 114 isolates of non‐Saccharomyces yeasts. Four isolates were selected because of their both high β‐glucosidase and β‐xylosidase activities. The ribosomal D1/D2 regions were sequenced to identify them as Pichia membranifaciens Pm7, Hanseniaspora vineae Hv3, H. uvarum Hu8, and Wickerhamomyces anomalus Wa1. The induction process was optimized to be carried on YNB‐medium supplemented with 4% xylan, inoculated with 106 cfu/mL and incubated 48 h at 28 °C without agitation. Most of the strains had a pH optimum of 5.0 to 6.0 for both the β‐glucosidase and β‐xylosidase activities. The effect of sugars was different for each isolate and activity. Each isolate showed a characteristic set of inhibition, enhancement or null effect for β‐glucosidase and β‐xylosidase. The volatile compounds liberated from wine incubated with each of the 4 yeasts were also studied, showing an overall terpene increase (1.1 to 1.3‐folds) when wines were treated with non‐Saccharomyces isolates. In detail, terpineol, 4‐vinyl‐phenol and 2‐methoxy‐4‐vinylphenol increased after the addition of Hanseniaspora isolates. Wines treated with Hanseniaspora, Wickerhamomyces, or Pichia produced more 2‐phenyl ethanol than those inoculated with other yeasts.  相似文献   

6.
7.
Streptomyces sp Mo endo‐β‐1,3‐glucanase was found to have hydrolyzing activity toward curdlan and released laminarioligosaccharides selectively. The molecular weight was estimated to be 36000 Da and its N‐terminal amino acid sequence was VTPPDISVTN. The optimal pH was 6 and the enzyme was found to be stable from pH 5 to 8. The optimal temperature was 60 °C and the activity was stable below 50 °C. The enzyme hydrolyzed selectively curdlan containing only β‐1,3 linkages. The enzyme had 89% relative activity toward Laminaria digitata laminarin, which contains a small amount of β‐1,6 linkages compared with curdlan, while Eisenia bicyclis laminarin with a higher amount of β‐1,6‐linkages, was not hydrolyzed. Mo enzyme adsorbed completely on curdlan powder. The enzymatic hydrolysis of curdlan powder resulted in the accumulation of laminaribiose (yield 81.7%). Trisaccharide was inevitably released from the hydrolysis of laminarioligosaccharides with 5 to 7 degrees of polymerization (DP). Although the enzyme cleaved off disaccharide (DP 2) from tetrasaccharide (DP 4), the reaction rate was lower than those of DP 5 to 7. The results indicated that the active site of Mo endo‐β‐1,3‐glucanase can efficiently recognize glucosyl residue chain of greater than DP 5 and hydrolyzes the β‐1,3 linkage between the 3rd and 4th glucosyl residue.  相似文献   

8.
Ovine whey proteins were fractionated and studied by using different analytical techniques. Anion‐exchange chromatography and reversed‐phase high‐performance liquid chromatography (HPLC) showed the presence of two fractions of β‐lactoglobulin but only one of α‐lactalbumin. Gel permeation and sodium dodecyl sulfate (SDS)‐polyacrylamide gel electrophoresis allowed the calculation of the apparent molecular mass of each component, while HPLC coupled to electrospray ionisation‐mass spectrometry (ESI‐MS) technique, giving the exact molecular masses, demonstrated the presence of two variants A and B of ovine β‐lactoglobulin. Amino acid compositions of the two variants of β‐lactoglobulin differed only in their His and Tyr contents. Circular dichroism spectroscopy profiles showed pH conformation changes of each component. The thermograms of the different whey protein components showed a higher heat resistance of β‐lactoglobulin A compared to β‐lactoglobulin B at pH 2, and indicated high instability of ovine α‐lactalbumin at this pH.  相似文献   

9.
10.
11.
Some functional and retrogradation properties of native and heat‐moisture treated potato and wheat starches were examined in the presence of hydroxypropyl β‐cyclodextrin (HPβ‐CD). HPβ‐CD increased swelling factor, amylose leaching, and solubility of both native and heat‐moisture treated wheat starches but it had less impact on corresponding potato starches. Gelatinization enthalpy of native wheat starch was decreased in the presence of HPβ‐CD but was increased in potato starch with increasing concentration. Reduction of amylose‐lipid complex endotherm in both native and heat‐moisture treated wheat starch was observed in the presence of HPβ‐CD. Heat‐moisture treatment did not change the transition parameters of amylose‐lipid complex showing its resistance to hydrothermal treatment. HPβ‐CD greatly decreased the pasting temperature of wheat starch. Cold paste viscosity of both native and heat‐moisture treated wheat starch was increased by HPβ‐CD to a greater extent than corresponding potato starch. Amylopectin retrogradation of all the starches was unaffected in the presence of HPβ‐CD but heat‐moisture treatment slightly decreased retrogradation of potato starch. These results suggest that HPβ‐CD can disrupt the amylose‐lipid complex within the starch granule in both native and heat‐moisture treated wheat starch but has no influence on amylopectin retrogradation. However, greatly increased wheat starch setback with HPβ‐CD indicates its greater effect on wheat starch amylose retrogradation.  相似文献   

12.
13.
14.
15.
This study was carried out to investigate the optimum conditions of cross‐linking β‐cyclodextrin (β‐CD) and recycling for cholesterol removal in milk and cream. The cross‐linked β‐CD was prepared with a 15% adipic acid solution, and the water solubility of the β‐CD was measured for the optimum conditions based on mixing temperature, mixing time, cross‐linking temperature, cross‐linking reaction time and cooling time. In the results of this study, optimum conditions were 80 °C mixing temperature, 2 h mixing time, 60 °C cross‐linking temperature, 24 h cross‐linking reaction time and 48 h cooling time. After determining the optimum conditions, the recyclable yields of the cross‐linked β‐CD ranged from 90.01% to 55.17% in six recyclings and the percentage of cholesterol removal by 15% cross‐linked β‐CD was over 90% until eighth recycling. On the basis of the results, this study suggests that 15% adipic acid‐added cross‐linked β‐CD maximised recyclable yield and that cholesterol removal was improved during recycling.  相似文献   

16.
Study of heat denaturation of major whey proteins (β‐lactoglobulin or α‐lactalbumin) either in separated purified forms, or in forms present in fresh industrial whey or in recomposed mixture respecting whey proportions, indicated significant differences in their denaturation depending on pH, temperature of heating, presence or absence of other co‐denaturation partner, and of existence of a previous thermal pretreatment (industrial whey). α‐Lactalbumin, usually resistant to tryptic hydrolysis, aggregated after heating at ⪈85°C. After its denaturation, α‐lactalbumin was susceptible to tryptic hydrolysis probably because of exposure of its previously hidden tryptic cleavage sites (Lys‐X and Arg‐X bonds). Heating over 85°C of β‐lactoglobulin increased its aggregation and exposure of its peptic cleavage sites. The co‐denaturation of α‐lactalbumin with β‐lactoglobulin increased their aggregation and resulted in complete exposure of β‐lactoglobulin peptic cleavage sites and partial unveiling of α‐lactalbumin tryptic cleavage sites. The exposure of α‐lactalbumin tryptic cleavage sites was slightly enhanced when the α‐lactalbumin/β‐lactoglobulin mixture was heated at pH 7.5. Co‐denaturation of fresh whey by heating at 95°C and pH 4.5 and above produced aggregates stabilized mostly by covalent disulfide bonds easily reduced by β‐mercaptoethanol. The aggregates stabilized by covalent bonds other than disulfide arose from a same thermal treatment but performed at pH 3.5. Thermal treatment of whey at pH 7.5 considerably enhanced tryptic and peptic hydrolysis of both major proteins.  相似文献   

17.
18.
19.
20.
A reactive cyclodextrin was synthesised by reacting β‐cyclodextrin with itaconic acid to enable it to fix permanently onto cellulosic materials. Because synthesis is a complicated process that is greatly influenced by many factors, the response surface methodology was applied in this study to optimise production. To investigate the efficiency of the esterification reaction, the amount of carboxyl groups and the double bond content of the end product were measured and employed as the responses. The 3D response surface plots and the contour plots derived from the mathematical models were applied to evaluate the interactive effects of parameters affecting the reaction, such as itaconic acid and catalyst concentrations, material to liquor ratio, temperature and time of reaction. The amount of carboxyl groups and the double bond content of cyclodextrin itaconate (about 175 and 150 meq./100 g CDI, respectively) in the optimum conditions indicated that one to two itaconic acid molecules could react with cyclodextrin according to the esterification reaction. In addition, the presence of the new supplementary groups on cyclodextrin could effect on the aggregation behaviour of this new cyclodextrin derivative as demonstrated by dynamic light scattering and AFM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号