首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 140 毫秒
1.
纳米纤维素在可降解包装材料中的应用   总被引:1,自引:1,他引:0  
目的综述纳米纤维素在可降解包装材料中的应用研究。方法总结国内外纳米纤维素在包装领域的最新研究,简述纳米纤维素的制备方法与特性,详细介绍纳米纤维素在生物质薄膜材料、生物质发泡材料、缓释抗菌材料和纸张中的应用研究,以及纳米纤维素功能性材料在包装中的研究进展,并讨论纳米纤维素应用在食品包装中的安全问题。结果纳米纤维素性能优异、绿色环保,作为可降解包装材料的增强成分可以提高复合材料的力学性能和阻隔性能,并可赋予材料特殊的功能。结论纳米纤维素在包装领域有着巨大的应用潜力,利用农作物及其剩余物制备纳米纤维素拥有广阔的发展前景。  相似文献   

2.
目的整理分析目前国内外氧化石墨烯复合材料在包装材料领域的应用与进展,对未来的发展进行展望。方法归纳整理国内外文献,简单介绍氧化石墨烯的基本性能及制备,氧化石墨烯复合材料的制备,并重点整理分析氧化石墨烯复合材料在包装材料领域的应用与进展。结果氧化石墨烯具有独特的二维纳米片层结构、超大的比表面积和亲水极性界面,通过添加氧化石墨烯可明显改善复合材料的力学性能、阻隔性能、抗菌性能等。结论氧化石墨烯复合材料具有阻隔性高、力学性能好等优点,广泛应用于包装材料领域,并且在抗菌、防腐、阻燃等包装材料领域具有良好的发展前景。  相似文献   

3.
目的综述国内外氮化硼复合材料在包装领域的应用与进展,对未来氮化硼材料在包装领域的应用进行展望。方法整理归纳国内外文献,简单介绍氮化硼纳米片(BNNSs)的性质和制备方法,以及氮化硼复合材料的制备方法,重点整理分析氮化硼复合材料在包装领域的应用与进展。结果氮化硼具有独特的二维纳米片层结构和相互重叠的层层结构。添加BNNSs不仅可以明显提高复合材料的导热率、机械强度、绝缘性等,还可以改善复合材料的阻隔性能、力学性能、化学稳定性能、抗菌性能等。结论氮化硼复合材料具有热导率高、绝缘性好等优点,可应用于电子封装领域,并在阻燃、抗菌、防腐等包装材料领域具有不错的发展前景。  相似文献   

4.
目的 对纤维素纳米纤维的制备及其在食品包装领域的研究进行综述,以期为食品包装材料的发展提供理论支持。方法 总结近几年纤维素纳米纤维的不同加工制造方法,关注食品包装材料的气体阻隔性能、抑菌性能、紫外线阻隔性能、疏水性能和新鲜度监测性能等,阐明纤维素纳米纤维在食品包装中的研究进展。结果 可以通过化学法、化学法结合机械法和酶法等方法制备纤维素纳米纤维,但均存在产率低、能耗高、尺寸分布不均匀等问题。纤维素纳米纤维可以应用于气体阻隔、抗菌、防紫外线、疏水及智能包装材料,现阶段的纳米纤维制品很难兼顾多功能性。结论 纤维素纳米纤维食品包装材料有望取代石油基塑料包装,在食品包装领域具有较大的应用前景。  相似文献   

5.
刘小静 《包装工程》2021,42(19):1-11
目的 将来源于自然的细菌纤维素作为包装材料应用于包装领域,以取代传统的塑料包装材料.方法 综述近几年细菌纤维素在包装领域的研究与应用现状,介绍细菌纤维素的基本培育过程、改性技术和制备方法,阐述细菌纤维素在包装领域的研究与应用.结果 细菌纤维素通过层层组装、聚合、联接等方式,可与多种聚合物高效复合,形成不同微观尺寸和结构特性的纤维素基多孔复合材料,从而改善其力学性能和物理性能,并可调控其阻隔性能和抗菌灭菌性能.常用细菌纤维模式为纳米细菌纤维和纳米细菌晶须.结论 细菌纤维素材料及其复合材料完全可以替代塑料用于包装领域,在食品包装和智能包装上的研究和应用前景较大.  相似文献   

6.
生物质纤维基包装复合材料的研究现状   总被引:1,自引:1,他引:0  
目的综述纤维基复合材料在包装中的应用和研究现状。方法介绍国内外生物质纤维基复合材料在发泡型材料、薄膜、板材等不同种类包装材料中的应用现状,分别总结各类包装材料使用的基材及制备工艺,比较不同纤维基复合材料的性能差异,指出复合材料在制备工艺及性能上的不足,并展望纤维基包装复合材料的发展前景。结果纤维素具有天然的化学结构,使纤维基材料具有良好的力学性能、阻隔性、可降解性,较好地应用在不同包装材料中。结论纤维基复合材料具有性能优良、可生物降解、经济环保等特点,在包装领域具有较大发展潜力,在原料的选择、制备工艺绿色化及性能的可控性等方面还有较大的研究空间。  相似文献   

7.
目的综述纤维基复合材料在包装中的应用和研究现状。方法介绍国内外生物质纤维基复合材料在发泡型材料、薄膜、板材等不同种类包装材料中的应用现状,分别总结各类包装材料使用的基材及制备工艺,比较不同纤维基复合材料的性能差异,指出复合材料在制备工艺及性能上的不足,并展望纤维基包装复合材料的发展前景。结果纤维素具有天然的化学结构,使纤维基材料具有良好的力学性能、阻隔性、可降解性,较好地应用在不同包装材料中。结论纤维基复合材料具有性能优良、可生物降解、经济环保等特点,在包装领域具有较大发展潜力,在原料的选择、制备工艺绿色化及性能的可控性等方面还有较大的研究空间。  相似文献   

8.
本文综述了PLA纳米复合材料在食品包装领域的研究进展,具体包括PLA/纳米木质纤维复合材料、PLA/纳米黏土复合材料、PLA/金属或金属氧化物纳米复合材料以及PLA共混聚合物纳米复合材料。并从制备方法、力学性能、热稳定性、降解性能、紫外光/气体阻隔性能、抗菌性能、迁移性能等方面分析了各类纳米复合材料的优势,最后对PLA/纳米复合材料在食品包装的应用前景进行了展望。  相似文献   

9.
氧化石墨烯在提高包装材料阻隔性能方面的应用   总被引:2,自引:0,他引:2  
高分子材料由于耗能低、成本低和加工性好的优点在包装材料领域得到越来越多的关注,但高分子材料的气体阻隔性能不够理想,极大限制了其在包装行业的应用。氧化石墨烯由于具有良好的阻隔性能而在改善高分子包装材料气体阻隔性能方面得到广泛应用。介绍了氧化石墨烯/高分子材料用于气体阻隔膜的制备方法:混合法、喷涂法和层层自组装法,并指出3种方法的优缺点。还对氧化石墨烯在改善高分子包装材料的气体阻隔性能方面的发展前景做了展望,并提出提高氧化石墨烯的剥离程度和控制其在膜中的取向是提高高分子材料阻隔性能的关键。  相似文献   

10.
目的 为了解决纯淀粉材料力学性能低、脆性大等缺点,探索纳米纤维素对淀粉膜材料的影响,为食品包装材料领域和替代传统石油基的高分子材料方向提供新的思路。方法 通过跟进国内外纳米纤维增强淀粉相关研究和应用进展,概括3种纳米纤维素的性能,介绍淀粉食品包装材料未来将面临的挑战和机遇,重点分析纳米纤维素对淀粉膜性能的影响。结论 纤维素纳米纤维(CNF)、纤维素纳米晶(CNC)和微晶纤维素(MCC)对淀粉进行增强后,淀粉复合材料的力学性能、阻隔性能和热学性能均得到改善,纳米纤维素增强淀粉食品包装材料在未来食品包装领域将得到扩展。  相似文献   

11.
纳米纤维素作为天然可降解材料,具有优良的力学性能、高比表面积、大长径比等特性。为研究基于纳米纤维素开发的泡沫材料在包装领域的应用,对近年来纳米纤维素基泡沫材料的制备方法及其缓冲、隔热、阻燃、抗菌、疏水等性能进行总结,概括了纳米纤维素泡沫材料在纳米纤维素制备、湿泡沫发泡和泡沫成型干燥等领域的进展。但由于现阶段纳米纤维素制备工艺的复杂性,以及干燥过程中较高的能耗和较长的周期,作为包装材料的关键性能指标还有进一步提升的空间,实现规模化生产仍有一些问题有待解决。通过综述纳米纤维基泡沫材料在包装领域的研究进展,以期为可持续包装材料的发展提供理论支持。  相似文献   

12.
Nanocellulose has potential applications across several industrial sectors and allows the development of innovative materials, as well as the enhancement of conventional materials properties. The nanocellulose particles can be utilized as fillers, in composites manufacture, as coating and as self‐standing thin films, achieving always very interesting and promising properties. Very few of the several reviews that recently appeared on this topic in the scientific literature, however, summarized the potential of cellulose in nanoform specifically for the packaging field rather focusing on different aspects, ranging from the chemistry and the morphology of nanocellulose particles to the preparation methods, the industrial applications and the patents released. In the present review, the remarkable chemical and physical properties of nanocellulose are introduced and discussed with specific reference to the packaging needs. First, the cellulose resources and structure are introduced, then the process methods to reach the nanoscale, the corresponding morphologies and nomenclatures are summarized, mentioning also the possible chemical modifications of nanocellulose and, finally, its practical and potential applications for packaging materials, especially food packaging materials, are tentatively proposed and discussed. Although the review might not cover every aspect on nanocellulose, yet the key points, particularly those related to safety and biodegradability issues, are regarded and considered. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
This review attempts to visualize the actual impact of nanocellulose-based materials in different areas. A detailed search in recent patent databases on nanocellulose showed the importance of this material, as well as relevant topics concerning its technological preparations to obtain versatile new composites materials, and the applications of nanocellulose in different domains. At the present moment, the most common techniques for nanocellulose preparation were found to be acid and enzymatic procedures, oxidation, electrospinning, high pressure homogenization, and steam explosion processes. Concerning nanocellulose composites, several aspects were found in recent patents ranging from simple to complex structures with different properties. As unique materials, nanocellulose can be used in different areas of expertise, such as in biomedical and technical applications. This review is a useful tool for researchers to provide an update on nanocellulose patents in an expanding and interesting field of nanotechnology.  相似文献   

14.
目的 综述聚乳酸(PLA)、聚乙交酯(PGA)、聚乙丙交酯(PLGA)及其改性材料在包装领域的研究进展,对改性材料及制备工艺进行展望,为PLA、PGA以及PLGA的改性与制备提供参考。方法 简介PLA、PGA以及PLGA的制备方法、基本性能,并总结近几年改性材料的种类及其制备工艺。结果 对PLA、PGA以及PLGA进行改性,再通过溶液铸膜、吹塑制膜等工艺制备薄膜,制备的薄膜具有优异的抗紫外性能、阻隔性能以及抗菌性能。结论 PLA、PGA以及PLGA具有优异的生物降解性能,通过改性后制备的薄膜性能更加均衡,在包装领域具有极大的应用前景,对聚合物的改性方法还需进行深入研究,制备出性能更加优异的改性材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号