首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
提出了一种全局光照计算方法,结合了两个知名的技术,光子映射和辐照度缓存.光子映射具有视点无关的优势,辐照度缓存可以快速计算间接光照,但后者是视点相关的,为了使光照缓存记录覆盖整个场景,辐照度缓存算法需要手动设置很多相机.利用这两种技术的各自优势,通过光子图来计算改进后的视点无关的辐照度缓存算法,实现了快速而准确的全局光...  相似文献   

2.
Computing global illumination in complex scenes is even with todays computational power a demanding task. In this work we propose a novel irradiance caching scheme that combines the advantages of two state-of-the-art algorithms for high-quality global illumination rendering: lightcuts , an adaptive and hierarchical instant-radiosity based algorithm and the widely used (ir)radiance caching algorithm for sparse sampling and interpolation of (ir)radiance in object space. Our adaptive radiance caching algorithm is based on anisotropic cache splatting, which adapts the cache footprints not only to the magnitude of the illumination gradient computed with light-cuts but also to its orientation allowing larger interpolation errors along the direction of coherent illumination while reducing the error along the illumination gradient. Since lightcuts computes the direct and indirect lighting seamlessly, we use a two-layer radiance cache, to store and control the interpolation of direct and indirect lighting individually with different error criteria. In multiple iterations our method detects cache interpolation errors above the visibility threshold of a pixel and reduces the anisotropic cache footprints accordingly. We achieve significantly better image quality while also speeding up the computation costs by one to two orders of magnitude with respect to the well-known photon mapping with (ir)radiance caching procedure.  相似文献   

3.
We present a novel framework for efficiently computing the indirect illumination in diffuse and moderately glossy scenes using density estimation techniques. Many existing global illumination approaches either quickly compute an overly approximate solution or perform an orders of magnitude slower computation to obtain high-quality results for the indirect illumination. The proposed method improves photon density estimation and leads to significantly better visual quality in particular for complex geometry, while only slightly increasing the computation time. We perform direct splatting of photon rays, which allows us to use simpler search data structures. Since our density estimation is carried out in ray space rather than on surfaces, as in the commonly used photon mapping algorithm, the results are more robust against geometrically incurred sources of bias. This holds also in combination with final gathering where photon mapping often overestimates the illumination near concave geometric features. In addition, we show that our photon splatting technique can be extended to handle moderately glossy surfaces and can be combined with traditional irradiance caching for sparse sampling and filtering in image space.  相似文献   

4.
Image space photon mapping has the advantage of simple implementation on GPU without pre‐computation of complex acceleration structures. However, existing approaches use only a single image for tracing caustic photons, so they are limited to computing only a part of the global illumination effects for very simple scenes. In this paper we fully extend the image space approach by using multiple environment maps for photon mapping computation to achieve interactive global illumination of dynamic complex scenes. The two key problems due to the introduction of multiple images are 1) selecting the images to ensure adequate scene coverage; and 2) reliably computing ray‐geometry intersections with multiple images. We present effective solutions to these problems and show that, with multiple environment maps, the image‐space photon mapping approach can achieve interactive global illumination of dynamic complex scenes. The advantages of the method are demonstrated by comparison with other existing interactive global illumination methods.  相似文献   

5.
This paper introduces a caching technique based on a volumetric representation that captures low-frequency indirect illumination. This structure is intended for efficient storage and manipulation of illumination. It is based on a 3D grid that stores a fixed set of irradiance vectors. During preprocessing, this representation can be built using almost any existing global illumination software. During rendering, the indirect illumination within a voxel is interpolated from its associated irradiance vectors, and is used as additional local light sources. Compared with other techniques, the 3D vector-based representation of our technique offers increased robustness against local geometric variations of a scene. We thus demonstrate that it may be employed as an efficient and high-quality caching data structure for bidirectional rendering techniques such as particle tracing or photon mapping.  相似文献   

6.
Photon mapping places an enormous burden on the memory hierarchy. Rendering a 512 x 512 image of a simple scene can require more than 196 Gbytes of raw bandwidth to the photon map data structure. This bandwidth is a major obstacle to real time photon mapping. This paper investigates two approaches for reducing the required bandwidth: 1) reordering the kNN searches and 2) cache conscious data structures. Using a Hilbert curve reordering, we demonstrate an experimental lower bound of 15 Mbytes of bandwidth for the same scene. Unfortunately, this improvement of four orders of magnitude requires a prohibitive amount of intermediate storage. We introduce two novel cost-effective algorithms that reduce the bandwidth by one order of magnitude. Scenes of different complexities are shown to exhibit similar reductions in bandwidth. We explain why the choice of data structure does not achieve similar reductions. We also examine the interaction of query reordering with two photon map acceleration techniques, importance sampling and the irradiance cache. Query reordering exploits the additional coherence that arises from the use of importance sampling in scenes with glossy surfaces. Irradiance caching also benefits from query reordering, even when complex surface geometry reduces the effectiveness of the irradiance cache.  相似文献   

7.
Radiance caching methods have proven to be efficient for global illumination. Their goal is to compute precisely illumination values (incident radiance or irradiance) at a reasonable number of points lying on the scene surfaces. These points, called records, are stored in a cache used for estimating illumination at other points in the scene. Unfortunately, with records lying on glossy surfaces, the irradiance value alone is not sufficient to evaluate the reflected radiance; each record should also store the incident radiance for all incident directions. Memory storage can be reduced with projection techniques using spherical harmonics or other basis functions. These techniques provide good results for low shininess BRDFs. However, they get impractical for shininess of even moderate value, since the number of projection coefficients increases drastically. In this paper, we propose a new radiance caching method that handles highly glossy surfaces while requiring a low memory storage. Each cache record stores a coarse representation of the incident illumination thanks to a new data structure, called Equivalent Area light Sources, capable of handling fuzzy mirror surfaces. In addition, our method proposes a new simplification of the interpolation process, since it avoids the need for expressing and evaluating complex gradients.  相似文献   

8.
Building designers rely on predictive rendering techniques to design naturally and artificially lit environments. However, despite decades of work on the correctness of global illumination rendering techniques, our ability to accurately predict light levels in buildings—and to do so in a short time frame as part of an iterative design process—remains limited. In this paper, we present a novel approach to parallelizing construction of an irradiance cache over multiple‐bounce paths. Relevant points for irradiance calculation based on one or multiple cameras are located by tracing rays through multiple‐bounce paths. Irradiance values are then saved to a cache in reverse bounce order so that the irradiance calculation at each bounce samples from previously calculated values. We show by comparison to high‐dynamic range photography of a moderately complex space that our method can predict luminance distribution as accurately as Radiance , the most widely validated tool used today for architectural predictive rendering of daylit spaces, and that it is faster by an order of magnitude.  相似文献   

9.
We introduce image-space radiosity and a hierarchical variant as a method for interactively approximating diffuse indirect illumination in fully dynamic scenes. As oft observed, diffuse indirect illumination contains mainly low-frequency details that do not require independent computations at every pixel. Prior work leverages this to reduce computation costs by clustering and caching samples in world or object space. This often involves scene preprocessing, complex data structures for caching, or wasted computations outside the view frustum. We instead propose clustering computations in image space, allowing the use of cheap hardware mipmapping and implicit quadtrees to allow coarser illumination computations. We build on a recently introduced multiresolution splatting technique combined with an image-space lightcut algorithm to intelligently choose virtual point lights for an interactive, one-bounce instant radiosity solution. Intelligently selecting point lights from our reflective shadow map enables temporally coherent illumination similar to results using more than 4096 regularly-sampled VPLs.  相似文献   

10.
Irradiance Caching is one of the most widely used algorithms to speed up global illumination. In this paper, we propose an algorithm based on the Irradiance Caching scheme that allows us (1) to adjust the density of cached records according to illumination changes and (2) to efficiently render the high‐frequency illumination changes. To achieve this, a new record footprint is presented. Although the original method uses records having circular footprints depending only on geometrical features, our record footprints have a more complex shape which accounts for both geometry and irradiance variations. Irradiance values are computed using a classical Monte Carlo ray tracing method that simplifies the determination of nearby objects and the pre‐computation of the shape of the influence zone of the current record. By gathering irradiance due to all the incident rays, illumination changes are evaluated to adjust the footprint’s records. As a consequence, the record footprints are smaller where illumination gradients are high. With this technique, the record density depends on the irradiance variations. Strong variations of irradiance (due to direct contributions for example) can be handled and evaluated accurately. Caching direct illumination is of high importance, especially in the case of scenes having many light sources with complex geometry as well as surfaces exposed to daylight. Recomputing direct illumination for the whole image can be very time‐consuming, especially for walkthrough animation rendering or for high‐resolution pictures. Storing such contributions in the irradiance cache seems to be an appropriate solution to accelerate the final rendering pass.  相似文献   

11.
The ability to interactively render dynamic scenes with global illumination is one of the main challenges in computer graphics. The improvement in performance of interactive ray tracing brought about by significant advances in hardware and careful exploitation of coherence has rendered the potential of interactive global illumination a reality. However, the simulation of complex light transport phenomena, such as diffuse interreflections, is still quite costly to compute in real time. In this paper we present a caching scheme, termed Instant Caching, based on a combination of irradiance caching and instant radiosity. By reutilising calculations from neighbouring computations this results in a speedup over previous instant radiosity‐based approaches. Additionally, temporal coherence is exploited by identifying which computations have been invalidated due to geometric transformations and updating only those paths. The exploitation of spatial and temporal coherence allows us to achieve superior frame rates for interactive global illumination within dynamic scenes, without any precomputation or quality loss when compared to previous methods; handling of lighting and material changes are also demonstrated.  相似文献   

12.
Radiance caching for efficient global illumination computation   总被引:1,自引:0,他引:1  
In this paper, we present a ray tracing-based method for accelerated global illumination computation in scenes with low-frequency glossy BRDFs. The method is based on sparse sampling, caching, and interpolating radiance on glossy surfaces. In particular, we extend the irradiance caching scheme proposed by Ward et al. (1988) to cache and interpolate directional incoming radiance instead of irradiance. The incoming radiance at a point is represented by a vector of coefficients with respect to a hemispherical or spherical basis. The surfaces suitable for interpolation are selected automatically according to the roughness of their BRDF. We also propose a novel method for computing translational radiance gradient at a point.  相似文献   

13.
Color adaptation is a well known ability of the human visual system (HVS). Colors are perceived as constant even though the illuminant color changes. Indeed, the perceived color of a diffuse white sheet of paper is still white even though it is illuminated by a single orange tungsten light, whereas it is orange from a physical point of view. Unfortunately global illumination algorithms only focus on the physics aspects of light transport. The ouput of a global illuminantion engine is an image which has to undergo chromatic adaptation to recover the color as perceived by the HVS. In this paper, we propose a new color adaptation method well suited to global illumination. This method estimates the adaptation color by averaging the irradiance color arriving at the eye. Unlike other existing methods, our approach is not limited to the view frustrum, as it considers the illumination from all the scene. Experiments have shown that our method outperforms the state of the art methods.  相似文献   

14.
We present a photon mapping technique capable of computing high quality global illumination at interactive frame rates. By extending the concept of photon differentials to efficiently handle diffuse reflections, we generate footprints at all photon hit points. These enable illumination reconstruction by density estimation with variable kernel bandwidths without having to locate the k nearest photon hits first. Adapting an efficient BVH construction process for ray tracing acceleration, we build photon maps that enable the fast retrieval of all hits relevant to a shading point. We present a heuristic that automatically tunes the BVH build's termination criterion to the scene and illumination conditions. As all stages of the algorithm are highly parallelizable, we demonstrate an implementation using NVidia's CUDA manycore architecture running at interactive rates on a single GPU. Both light source and camera may be freely moved with global illumination fully recalculated in each frame.  相似文献   

15.
徐庆  马亮  李明楚  王炜 《计算机工程》2005,31(24):186-187
提出并实现了一个基于蒙特卡罗整体光照计算的照片真实感图形绘制系统,该系统以蒙特卡罗路径跟踪技术为核心,实现了双向路径跟踪、辐照度缓存和光子图等著名的经典算法并以动态链接库的形式提供给用户,非常便于应用。系统高度模块化、具有良好的可扩展性。  相似文献   

16.
Ray‐traced global illumination (GI) is becoming widespread in production rendering but incoherent secondary ray traversal limits practical rendering to scenes that fit in memory. Incoherent shading also leads to intractable performance with production‐scale textures forcing renderers to resort to caching of irradiance, radiosity, and other values to amortize expensive shading. Unfortunately, such caching strategies complicate artist workflow, are difficult to parallelize effectively, and contend for precious memory. Worse, these caches involve approximations that compromise quality. In this paper, we introduce a novel path‐tracing framework that avoids these tradeoffs. We sort large, potentially out‐of‐core ray batches to ensure coherence of ray traversal. We then defer shading of ray hits until we have sorted them, achieving perfectly coherent shading and avoiding the need for shading caches.  相似文献   

17.
At present, stochastic progressive photon mapping (SPPM) is one of the most comprehensive methods for a consistent global illumination computation. Even though the number of photons is unlimited due to their progressive nature, the scene size is still bound by the available main memory. In this paper, we present the first consistent out‐of‐core SPPM algorithm. In order to cope with large scenes, we automatically subdivide the geometry and parallelly trace photons and eye rays in a portal‐based system, distributed across multiple machines in a commodity cluster. Moreover, modifications of the original SPPM method are introduced that keep both the utilization of tracer machines high and the network traffic low. Therefore, compared to a portal‐based single machine setup, our distributed approach achieves a significant speedup. We compare a GPU‐based with a CPU‐based implementation and demonstrate our system in multiple large test scenes of up to 90 million triangles.  相似文献   

18.
The popularity of many‐light rendering, which converts complex global illumination computations into a simple sum of the illumination from virtual point lights (VPLs), for predictive rendering has increased in recent years. A huge number of VPLs are usually required for predictive rendering at the cost of extensive computational time. While previous methods can achieve significant speedup by clustering VPLs, none of these previous methods can estimate the total errors due to clustering. This drawback imposes on users tedious trial and error processes to obtain rendered images with reliable accuracy. In this paper, we propose an error estimation framework for many‐light rendering. Our method transforms VPL clustering into stratified sampling combined with confidence intervals, which enables the user to estimate the error due to clustering without the costly computing required to sum the illumination from all the VPLs. Our estimation framework is capable of handling arbitrary BRDFs and is accelerated by using visibility caching, both of which make our method more practical. The experimental results demonstrate that our method can estimate the error much more accurately than the previous clustering method.  相似文献   

19.
This paper presents an improvement to the stochastic progressive photon mapping (SPPM), a method for robustly simulating complex global illumination with distributed ray tracing effects. Normally, similar to photon mapping and other particle tracing algorithms, SPPM would become inefficient when the photons are poorly distributed. An inordinate amount of photons are required to reduce the error caused by noise and bias to acceptable levels. In order to optimize the distribution of photons, we propose an extension of SPPM with a Metropolis‐Hastings algorithm, effectively exploiting local coherence among the light paths that contribute to the rendered image. A well‐designed scalar contribution function is introduced as our Metropolis sampling strategy, targeting at specific parts of image areas with large error to improve the efficiency of the radiance estimator. Experimental results demonstrate that the new Metropolis sampling based approach maintains the robustness of the standard SPPM method, while significantly improving the rendering efficiency for a wide range of scenes with complex lighting.  相似文献   

20.
In information-centric networking, in-network caching has the potential to improve network efficiency and content distribution performance by satisfying user requests with cached content rather than downloading the requested content from remote sources. In this respect, users who request, download, and keep the content may be able to contribute to in-network caching by sharing their downloaded content with other users in the same network domain (i.e., user-assisted in-network caching). In this paper, we examine various aspects of user-assisted in-network caching in the hopes of efficiently utilizing user resources to achieve in-network caching. Through simulations, we first show that user-assisted in-network caching has attractive features, such as self-scalable caching, a near-optimal cache hit ratio (that can be achieved when the content is fully cached by the in-network caching) based on stable caching, and performance improvements over in-network caching. We then examine the caching strategy of user-assisted in-network caching. We examine three caching strategies based on a centralized server that maintains all content availability information and informs each user of what to cache. We also examine three caching strategies based on each user’s content availability information. We first show that the caching strategy affects the distribution of upload overhead across users and the number of cache hits in each segment. One interesting observation is that, even with a small storage space (i.e., 0.1% of the content size per user), the centralized and distributed approaches improve the cache hit ratio by 50% and 45%, respectively. With an overall view of caching information, the centralized approach can achieve a higher cache hit ratio than the distributed approach. Based on this observation, we discuss a distributed approach with a larger view of caching information than the distributed approach and, through simulations, confirm that a larger view leads to a higher cache hit ratio. Another interesting observation is that the random distributed strategy yields comparable performance to more complex strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号