共查询到18条相似文献,搜索用时 93 毫秒
1.
2.
泡沫铝由于具有出色的力学、电学、热力学性能而被人们广泛关注和应用。为了拓展泡沫铝的应用领域,研究者在制备高性能的铝基复合泡沫方面付出了大量的努力。研究表明,通过添加不同种类增强体制备复合泡沫的方法虽然可以提高复合泡沫的强度,但是会引起各种不同的问题。例如,硬质陶瓷颗粒(SiC颗粒、Al_2O_3颗粒等)作为增强体可以提高复合泡沫的抗压强度,但是会增强材料的脆性;纤维和晶须这种二维增强相可以在一定程度上降低增强体带来的脆性,但是仍存在增强体难以均匀分布、处理方法繁琐且界面反应控制较难等问题。因此,无论是泡沫铝还是复合泡沫,都鲜有单独使用的情况,多数情况下是与其他强度较高的部件组合成复合构件使用,例如泡沫铝夹芯板、泡沫铝填充金属薄壁管等复合结构。泡沫铝填充金属薄壁管复合结构是将泡沫铝芯材通过多种方式填入薄壁金属管中并实现二者的有效连接而组成的特殊结构。目前实现填充的方法可分为外加填充法与原位制备法。泡沫铝填充金属薄壁管结构不仅具有优异的吸能特性和阻尼性能,还具有一定的韧性和较高的独立承载能力。作为一种新型的复合结构,泡沫铝填充金属薄壁管在减震吸能、吸声降噪等方面的潜在优势极其引人关注。尤其是泡沫铝填充金属薄壁管复合结构在汽车制造业领域具有的巨大应用潜力和广阔应用前景引起了研究者们的重视。相较于传统的减震吸能结构,泡沫铝填充金属薄壁管在汽车制造业领域中的应用具有三大优势:(1)在不削减车身强度的情况下极大减轻车身的质量,减少汽车的油耗及尾气排放;(2)在受到撞击时依靠自身塑性变形吸收绝大部分碰撞能量并及时将冲击分散到车身主体上,避免局部集中变形过大对车内乘客造成伤害,充分保证车内人员的人身安全;(3)回弹变形很小,可以有效避免事故中人体受到二次伤害。目前复合结构最为常见的应用是作为汽车的保险杠、副车架、前纵梁等防撞吸能部件,在降低生产成本的同时也提高了汽车的安全系数。本文介绍了泡沫铝填充金属管复合结构的主要制备方法和性能特点,阐述了国内外对该种复合结构的研究现状,并对其未来的研究方向进行了展望。 相似文献
3.
闭孔泡沫铝缓冲性能及其变形失效机理研究 总被引:1,自引:0,他引:1
在闭孔泡沫铝的准静态压缩实验基础上,研究不同孔隙率下的力学性能和吸能性能,分析其压缩变形机理。结果表明,闭孔泡沫铝的压缩过程存在明显的3个阶段:线弹性阶段、塑性平台阶段和致密化阶段。随着孔隙率的增大,闭孔泡沫铝的屈服强度、弹性模量和压实应力均减小。在压缩过程中,吸能效率和理想吸能效率均是先上升后下降。孔隙率对吸能效率影响较大,对最大理想吸能效率影响不大。将理想吸能效率曲线和吸能效率曲线结合可以选择合适的缓冲材料,发挥其最佳吸能特性。闭孔泡沫铝在准静态压缩条件下有良好的塑性变形能力,变形呈逐层破坏的特征。 相似文献
4.
泡沫铝因具有低密度、高比刚度、缓冲、减震等诸多优良特性而引起了人们越来越多的关注,并且逐渐在汽车、航空等领域得到广泛运用.泡沫铝复合结构是由泡沫铝芯与外层的致密金属通过各种连接方式所组成,其形状各异且具有比单纯泡沫铝更加优异的性能.综述了国内外泡沫铝及其复合结构的应用现状,讨论了其制备方法并对其发展前景进行了展望. 相似文献
5.
目的 研究泡沫铝相对密度、孔径对泡沫铝-聚氨酯复合材料准静态压缩力学性能、吸能性能、吸能效率和理想吸能效率的影响。方法 将制备的泡沫铝-聚氨酯复合材料试样在万能材料试验机上进行准静态压缩试验,得出对应的应力-应变曲线,由应力-应变曲线分析材料的吸能性能、吸能效率、理想吸能效率。结果 当泡沫铝孔径一定,泡沫铝相对密度由0.350提升至0.384时,泡沫铝-聚氨酯复合材料屈服强度提升了4.38 MPa,而最大吸能效率由0.29下降至0.27,准静态压缩性能有所提高。当泡沫铝相对密度一定,泡沫铝孔径由5 mm增加至9 mm时,泡沫铝-聚氨酯复合材料屈服强度提升了6.16 MPa,而最大吸能效率由0.25升高到0.27,准静态压缩性能有所提高。结论 当进行准静态压缩时,泡沫铝-聚氨酯复合材料压缩性能随相对密度的增大而增大,随孔径的增大而增大;泡沫铝-聚氨酯复合材料的吸能性能随相对密度的增大而增大,随孔径的增大而增大;泡沫铝-聚氨酯复合材料的最大吸能效率随相对密度的增大而减小,随孔径的增大变化微小。 相似文献
6.
7.
8.
9.
10.
泡沫铝具有减震和吸收冲击能量的良好特性。但由于泡沫铝自身强度较低,单独作为承载和吸能构件实用意义不大。将泡沫铝作为填充材料能充分发挥泡沫铝的优良性能。采用数值模拟方法研究低密度Duocel泡沫铝填充薄壁方钛管和圆钛管在30m/s的匀速冲击载荷作用下的瞬态吸能特性。提出柱壳比(R)作为比较不同截面形状的泡沫铝填充结构的依据。研究发现泡沫铝填充方钛管的比吸能为ES(F+P)A=0.438J;圆钛管的比吸能为EC(F+P)A=0.344J。泡沫铝填充方钛管的吸能效果好于圆钛管,前者是后者的1.273倍。在相互作用和影响下,泡沫铝柱和管的变形模式和力学性能都发生了较大的改变,被泡沫铝填充的方管的屈曲波长变短,圆管则与之相反。粘合后,泡沫铝柱和管具有类似的力—位移曲线和相似的力学性质。 相似文献
11.
以泡沫铝为夹芯材料,玄武岩纤维(BF)和超高分子量聚乙烯纤维(UHMWPE)复合材料为面板,制备夹层结构复合材料。研究纤维类型、铺层结构和芯材厚度对泡沫铝夹层结构复合材料冲击性能和损伤模式的影响规律,并与铝蜂窝夹层结构复合材料性能进行对比分析。结果表明:BF/泡沫铝夹层结构比UHMWPE/泡沫铝夹层结构具有更大的冲击破坏载荷,但冲击位移和吸收能量较小。BF和UHMWPE两种纤维的分层混杂设计比叠加混杂具有更高的冲击破坏载荷和吸收能量。随着泡沫铝厚度的增加,夹层结构复合材料的冲击破坏载荷降低,破坏吸收能量增大。泡沫铝夹层结构比铝蜂窝夹层结构具有更高的冲击破坏载荷,但冲击破坏吸收能量较小;泡沫铝芯材以冲击部位的碎裂为主要失效形式,铝蜂窝芯材整体压缩破坏明显。 相似文献
12.
13.
目的研究密度、孔洞分布以及加载应变率对泡沫铝材料变形行为和吸能特性的影响。方法对3种不同密度范围的泡沫铝材料进行不同应变率下的压缩实验研究。结果实验结果显示,在10 mm/min加载速率下,密度范围为0.27~0.33 g/cm3和0.47~0.53 g/cm3的泡沫铝材料平均屈服应力分别为1.3和7.2MPa,平均应变能密度分别为0.8和3.8 MJ/m3。此外,密度为0.453 g/m3但孔洞分布不均匀的泡沫铝应变能密度为3.26 MJ/m3,密度为0.449 g/m3但孔洞分布均匀的泡沫铝应变能密度为3.84 MJ/m3。结论随着密度的增加,泡沫材料的屈服应力以及对应于不同应变时的应力均增加,而孔洞分布均匀的泡沫材料的能量吸收能力明显优于孔洞分布不均匀的泡沫材料,此外,加载速度对泡沫材料的应力应变行为有一定的影响,但对其能量吸收能力并无影响。 相似文献
14.
15.
泡沫铝在冲击安全防护中的应用 总被引:3,自引:0,他引:3
对泡沫铝冲击吸能器工程设计提出了可行性方案并对其厚度进行了理论设计,举出设计实例,运用有限元法进行仿真检验;结果证明,理论设计与仿真结果是相一致的,设计方法为吸能器的选材与设计提供了依据。 相似文献
16.
泡沫铝填充管是在一个或多个不同横截面形状的薄壁金属管内填充泡沫铝而形成的一种结构功能一体化材料。泡沫铝的填充不仅提高了薄壁金属管的轴向压缩性能和抗弯曲性能,也避免了泡沫铝本身强度不高的劣势。从泡沫铝填充管的制备、结构及性能方面综述了其研究现状,从泡沫铝单管、双管与多管填充的角度分析了结构对泡沫铝填充管压缩和弯曲性能的影响。单管填充泡沫铝改变了薄壁管压缩及弯曲的失效形式,提高了薄壁管的吸能性;双管填充泡沫铝的内管多数以同心管形式排列,在管内部所填充的泡沫铝支撑的基础上,内管进一步支撑起泡沫铝填充管的承载和吸能作用,其压缩及弯曲性能较单管填充更为突出;多管填充泡沫铝在双管基础上进行拓展,可以同心或并列排布,对薄壁管性能的提升各有不同,平行排列的多管结构能量吸收效率高于泡沫铝填充单管,但低于相应的薄壁空管结构。泡沫铝填充管的制备技术通常是分别制取泡沫铝和管材再进行填充,尽管过于单一且工艺复杂,但由于其具有优异的承载和吸能能力,仍然在交通运输、航空航天等领域极具应用潜力。 相似文献
17.
目的 研究密度与应变率对闭孔EVA泡沫材料类静态缓冲性能的影响规律。方法 基于包装用缓冲材料静态压缩试验法和能量吸收图法,对密度为80、95、106、124和180kg/m3的闭孔EVA泡沫试样在不同应变率下进行类静态压缩试验,得到应力-应变曲线,基于此进一步处理得到相应的单位体积能量吸收、能量吸收效率、缓冲系数和最大比吸能等曲线,同时绘制试样类静态压缩过程中的能量吸收图。结果 闭孔EVA泡沫材料的密度越高,密实化应变越小,最大单位体积能量吸收越大;在压缩应变相同时,应变率越大,应力、单位体积能量吸收、能量吸收效率、最大比吸能越大;得到了5种密度闭孔EVA泡沫材料的本构方程和闭孔EVA泡沫材料的能量吸收图及其斜率与应变率的关系式;通过分析密实化应变与相对密度的关系,得到相关拟合公式。结论 密度与应变率对闭孔EVA泡沫材料的缓冲性能有着非常大的影响,在一定的应力水平下会有一个最佳的密度使得刚好能吸收完能量,并保护产品不破损,该最佳密度受应变率的影响,因此可以通过能量吸收图进行相关的缓冲包装优化设计。 相似文献