首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为研究褶皱缺陷对玻璃纤维增强树脂基复合材料层合板拉伸性能的影响,采用Abaqus有限元软件,结合USDFLD子程序,建立含褶皱缺陷的玻璃纤维增强复合材料层合板渐进失效分析模型。通过数值仿真分析方法对含褶皱缺陷层合板在拉伸载荷作用下的强度退化和渐进失效过程进行研究,分析褶皱高宽比对层合板拉伸性能的影响。结果表明:拉伸强度预测值以及损伤初始位置与文献中实验结果吻合较好,验证了建立的仿真分析模型;随着褶皱高宽比的增加,拉伸失效载荷和强度显著降低;在拉伸载荷作用下,在褶皱变形区域与富树脂区域相接的铺层位置存在应力集中;层合板损伤由富树脂区域逐渐向褶皱变形区域扩展,最终在褶皱变形区域完全失效;受褶皱影响,层合板在拉伸过程中发生弯曲变形,在线弹性阶段,相同载荷条件下变形随着褶皱高宽比的增加而增加。  相似文献   

2.
为研究拉伸载荷下碳纤维/环氧树脂层合板的疲劳性能,开展了4种应力水平下的T300/6511碳纤维平纹织物层合板的拉-拉疲劳实验,得到了不同应力水平下层合板的疲劳寿命。采用超声波C扫和扫描电子显微镜(SEM)观察断口形貌及内部损伤,讨论复合材料疲劳损伤发展积累过程和断裂机理。通过复合材料疲劳有限元分析模型,模拟了复合材料织物层合板疲劳损伤积累和失效过程,绘制了S-lg N曲线,分析发现模型预测的疲劳寿命及失效模式与实验结果吻合良好。疲劳加载时,层合板两侧自由边的表面首先出现基体开裂和分层损伤,随后诱发基体与纤维间界面破坏,损伤加剧,并迅速向内侧扩展;最后大量纤维和基体断裂,损伤贯穿整个截面,导致疲劳断裂。  相似文献   

3.
采用解析计算和拉伸试验相结合的方法,对开孔CFRP复合材料板的孔边应力和损伤进行了研究。基于复变函数方法并结合Tsai-Hill失效准则,计算得到了层合板各单层的主应力分布和首次损伤载荷系数。为了测定层合板面内拉伸性能并对解析结果进行验证,基于ASTM D5766-07试验标准对CFRP层合板进行了拉伸试验。研究结果表明:当开孔CFRP层合板承受沿长轴方向拉伸载荷时,0°和±45°铺层为主承力层,且主应力σ1最大值出现在与孔中心成65°~115°和245°~295°范围内;各层最小首次损伤载荷系数出现在65°~115°范围内,其中,45°层和-45°层的损伤载荷系数最小;当载荷达到初始损伤载荷时,层合板开始出现内部损伤和参数退化;拉伸试验后CFRP复合材料板试件损伤的形式主要为基体开裂和纤维断裂,损伤的区域在孔周边61°~90°和241°~270°范围内,试验结果与解析计算结果基本一致。  相似文献   

4.
开孔和面外弯曲会引起层合板局部应力过高,导致局部基体开裂、纤维断裂以及层间分层等失效模式。本文采用解析法和有限元法相结合的方法,对开孔无限大层合板的孔边应力进行研究。基于经典层合板理论和复变函数理论对复合材料平板在面外载荷作用下进行孔边应力分析,通过保角变换,解决应力函数在复杂孔形边界上的问题;引入Puck和Yamada-Sun混合强度失效准则,对层合板刚度进行迭代,研究了带孔复合材料平板孔边真实应力应变分布,并与有限元结果进行了对比,吻合较好。本文工作以期能对开孔层合板的失效预测提供指导。  相似文献   

5.
建立了含圆柱形金属预埋件和阶梯形金属预埋件碳纤维/环氧树脂层合板的三维分析模型,单层板简化为三维正交各向异性材料。采用有限元方法对法向载荷下含金属预埋件四边简支层合板进行了应力分析,给出了发生初始损伤单层板各材料主方向应力分布和金属预埋件的VON MISES应力分布。基于复合材料单层板的最大应力强度准则给出了两种分析模型的极限载荷。分析结果表明,含圆柱形预埋件层合板初始损伤发生在45°铺层靠近孔边的2点钟方位,破坏模式为基体剪切破坏;含阶梯型预埋件层合板初始损伤发生在-45°铺层靠近孔边的10点钟方位,破坏模式为基体拉伸破坏。法向载荷作用下,阶梯型预埋件结构比圆柱形预埋件结构具有更大的传力面积,大部分纤维处于适宜的受拉状态,其极限载荷比圆柱形预埋件结构提高了40.36%。  相似文献   

6.
复合材料开口会引起应力集中,导致孔边应力梯度较大。在开展数值分析时,有限元网格尺寸对孔边应力计算精度影响较大。为获得高精确性的数值结果,提高计算效率,本文通过开展复合材料开口层压板在单轴和双轴两种载荷状态下孔边应力应变分析,研究在不同载荷状态、开口尺寸及铺层比例下,有限元网格尺寸与数值计算精度的关系,为复合材料开口层合板的有限元建模提供方法依据。  相似文献   

7.
实验测试了T300/7901碳纤维复合材料[0/90]_(8s)层合板在四点弯曲静载下的载荷-位移响应及破坏载荷。基于桥联模型,在商用软件Abaqus/CAE中实现对该层合板在四点弯曲静载条件下的层内以及层间损伤破坏进行模拟分析。分析方法分为四个部分:仅利用组分材料数据,基于桥联模型对单向复合材料层的本构关系建模;利用考虑三维应力的Hashin判据预报复合材料层的纤维拉伸、压缩损伤及基体拉伸、压缩损伤;出现组分材料损伤后对相应材料点采用Camando方法进行刚度退化;在复合材料单层中间插入薄的纯树脂层,通过树脂层的损伤破坏分析层间分层。在Abaqus/Explicit模块中,利用子程序VUMAT完成以上材料建模分析;将模拟结果与实验数据进行对比。结果表明,模拟得到的载荷-位移曲线及破坏载荷与实验结果吻合很好,所提出的材料模型能有效预报纤维复合材料层合板的层内及层间损伤破坏情况。  相似文献   

8.
以应用于某新能源电动汽车的复合材料层合板为研究对象,利用万能试验机和静态应变测试分析系统等提出了可靠的复合材料层合板准静态拉伸和压缩力学性能试验测定方法,从而为复合材料结构在汽车轻量化中的设计和应用提供了试验依据。该层合板结构采用±45°交叉铺层方法,由2层碳纤维、1层芳纶纤维和2层玻璃纤维层叠构成。试验结果表明,该复合材料层合板在准静态拉伸时呈现沿±45°方向和层间分离挤压的断裂失效模式,这与其内部纤维铺层方向是一致的。同时,由于在复合材料板材中加入了增韧和板材失效时起连接作用的芳纶纤维和玻璃纤维铺层,该复合材料层合板的整体力学性能较常见碳纤维增强复合材料板材,其弹性模量和强度性能均有所降低。  相似文献   

9.
利用ABAQUS有限元程序所建立了一种基于用户子程序USDFLD和Hashin强度准则的复合材料损伤计算模型,用该模型对复合材料加筋层合板在静压痕力作用下主要发生的纤维拉伸破坏、纤维微屈破坏、基体拉伸破坏、基体压缩破坏、层间拉伸破坏、层间压缩破坏这几种基本损伤模式进行分析。对复合材料加筋层合板在静压痕力作用下进行损伤全过程数值研究,利用该有限元模型预测复合材料层合板静压痕力作用下的荷载-位移曲线以及凹坑深度与静压痕力的关系曲线。数值仿真与实验结果吻合较好,表明该损伤模型方法的可行性。复合材料层合板加筋后拐点处的凹坑深度明显加大,达到0.84mm。通过对加筋板的刚度和强度失效规律的分析,为进一步的复合材料格栅加筋结构(如飞机结构中复合材料后压力框)的性能分析提供参考。  相似文献   

10.
对含3种不同方向穿透裂纹的层合板进行了拉伸试验研究,通过观测试验过程与断口分析,研究了含穿透裂纹层合板的失效行为。在此基础上,采用ABAQUS软件建立了含穿透裂纹层合板渐进损伤有限元分析模型,对其拉伸性能进行了分析,并对初始损伤与裂纹扩展路径进行了研究,讨论了裂纹形式对复合材料层合板剩余拉伸强度的影响。结果表明,初始损伤发生在裂纹尖端,损伤有沿垂直于载荷方向扩展的趋势。裂纹方向的变化对层合板的剩余强度有明显影响。  相似文献   

11.
芳纶纤维因具有轻质高强、良好耐疲劳性和化学稳定性等优良性能,逐渐成为重要的国防军工材料。选用芳纶单向布和平纹织物设计并制备了不同结构参数的芳纶纤维复合材料层合板,采用落锤冲击试验仪在不同的冲击能量下进行低速冲击实验,根据最大接触力、能量吸收能力和凹陷深度评估层板的抗冲击性能。结果表明,[0/45/-45/90]s单向层合板的接触载荷峰值高于[0/90]s单向层合板和平纹织物层合板,并在高能量冲击下具有优异的能量吸收能力,其损伤区域最小。破坏形貌表明,单向复合材料层合板损伤以分层为主,而平纹织物复合材料层合板以整体塑性大变形为主,这为芳纶纤维复合材料的优化设计及防护应用提供一定的理论指导。  相似文献   

12.
基于ANSYS的APDL语言开发复合材料层合板的拉伸失效模块,实现有限元分析的参数化建模和累积失效分析.采用Solid64宴体单元建立复合材料层合板的三维模型,依据改进的三维Haisin失效准则对结构单元进行失效判断,并对失效单元进行刚度退化.当失效单元贯穿所有单层时,复合材料层合板结构彻底失效.通过对铺层方式为[0/45/-45/90]s复合材料层合板结构拉伸模拟,探讨其拉伸破坏形式,得到层合结构的最终拉伸强度,并把其拉伸强度与文献实验结果进行对比,得到的结果与实验一致.该方法简便直观,便于工程运用.  相似文献   

13.
建立了含孔复合材料层合板的三维有限元模型,以二维Zinovie理论为基础,结合改进的三维Hashin准则,对二维Zinoviev理论进行了简化和拓展,提出了适用于三维模型的刚度退化方案,完成了对层合板的渐进失效分析。从纤维失效、基体失效、分层失效三个方面讨论了层合板在拉伸载荷作用下的失效过程,并预测了层合板的拉伸极限强度及破坏模式。数值模拟结果与试验基本吻合,验证了所提出退化模型的正确性。  相似文献   

14.
对玻璃纤维2维平纹编织复合材料在6个不同温度下的弯曲性能进行了实验测试,研究了温度对编织复合材料层合板的载荷-挠度曲线、弯曲强度、弯曲模量和失效模式的影响。结果表明:在三点弯曲载荷作用下,2维编织复合材料层合板跨中发生了局部纤维束屈曲失效和基体的开裂与分层失效。温度对玻璃纤维复合材料的力学性能和失效形式产生了重要影响。在高温环境中玻璃纤维2维平纹编织复合材料的弯曲力学性能迅速下降,当试验温度从20℃升高至115℃时,层合板的弯曲强度和模量分别下降了91%和66%。随着温度的升高,2维编织复合材料层合板的弯曲失效变形行为也发生了转变,逐渐由脆性破坏转变为塑性变形失效。  相似文献   

15.
基于复合材料刚度连续折减方案,结合三维Hashin失效准则,建立了复合材料渐进损伤分析模型,编写了模型对应的用户材料子程序(UMAT)。通过ABAQUS调用该程序对碳纤维增强复合材料曲梁四点弯曲进行仿真,将仿真结果与试验结果进行对比,验证了渐进损伤分析模型的有效性。分析了复合材料曲梁的损伤失效行为,发现在弯曲载荷作用下,碳纤维增强复合材料曲梁主要的失效模式是曲梁弯角区域的基体拉伸失效与拉伸分层失效,分层失效发生后扩展迅速,曲梁迅速失去承载能力最终失效,层间拉伸应力过大是导致复合材料曲梁发生分层失效的主要原因。  相似文献   

16.
T型接头作为常见的复合材料结构连接型式,其力学性能直接关系到结构的安全性。建立了考虑胶层的复合材料T型接头有限元模型,将仿真结果与试验图像进行对比,其变形形式和破坏模式与试验吻合较好。研究表明,在垂向载荷作用下,T型接头呈现"S"型弯曲;在蒙皮折角处以及端部胶接处出现应力集中;胶层剪应力两端大,中间出现低应力槽型区,弯曲正应力、等效应力呈现出双峰值特征;T型接头最有可能出现的破坏形式为胶层与蒙皮之间剥离,而芯材则由于应力集中引起剪切破坏或拉伸破坏。在折角处倒圆、在胶接处光滑过渡可以明显消除应力集中。  相似文献   

17.
本文研究了T700/MTM46复合材料层合板在高应力水平下的拉-拉疲劳性能。首先开展了层合板静拉伸试验研究,得到了静拉伸强度、模量和破坏应变,各项静力性能指标分散性小,静力破坏模式以小范围内的脆性断裂为主。然后根据得到的静强度确定疲劳应力水平,开展层合板拉-拉疲劳性能试验研究,各应力水平下疲劳寿命分散性大,且并没有随应力水平高低表现出规律性;疲劳破坏模式以分层失效为主,几乎整个工作段长度内都出现了严重的分层现象;疲劳应力水平越高,破坏时刚度下降程度越小,且归一化刚度退化曲线表现出"快-慢-快"三阶段性;疲劳过程中损伤起源于90°层,且在疲劳过程中该层内的损伤扩展最为严重,0°层的损伤出现最晚,但是0°层纤维断裂预示着即将发生灾难性的疲劳破坏。  相似文献   

18.
通过改变偏轴角为45°和90°的[45°/–45°],[0°/90°]正交铺层组的质量分数,设计了6种复合材料层合板铺层结构。研究了两种偏轴角正交铺层组共同存在的铺层结构对真空辅助树脂传递模塑工艺复合材料层合板弯曲强度及失效行为的影响。通过弯曲实验获得6种复合材料层合板的弯曲强度、损伤特征以及应力–应变曲线。结果表明,随偏轴角为90°的[0°/90°]铺层组质量分数的增加,复合材料层合板的弯曲强度逐渐增大;两种偏轴角正交铺层组共同存在的铺层结构可引起复合材料层合板在弯曲载荷作用下的损伤模式多元化。  相似文献   

19.
采用钛合金与芳纶纤维复合材料制备了不同胶层厚度的单搭接接头。利用DIC与万能试验机对接头进行了拉伸-剪切性能测试,研究了不同胶层厚度异质材料的接头胶接性能、应变场与破坏模式的变化规律,分析了在拉伸载荷下,不同胶层厚度接头的失效特点。结果表明,当胶层厚度由0. 2 mm增加至1. 2 mm时,接头极限载荷由6. 13k N降低至5. 89 k N,损伤后剩余强度降低,薄胶层接头出现渐进失效;复合材料端头高剥离与拉伸应变区域面积增加,厚胶层与被胶接件一同变形,导致接头提前失效;钛合金-胶层界面破坏模式增多,芳纶纤维复合材料层间破坏模式减少;接头在发生复合材料层间破坏后,仍能够保持较高的剩余强度,当钛合金-胶层界面遭到破坏后,易整体失效。  相似文献   

20.
2维C/SiC复合材料的拉伸损伤演变过程和微观结构特征   总被引:1,自引:0,他引:1  
通过单向拉伸和分段式加载-卸载实验,研究了二维编织C/SiC复合材料的宏观力学特性和损伤的变化过程.用扫描电镜对样品进行微观结构分析,并监测了载荷作用下复合材料的声发射行为.结果表明:在拉伸应力低于50MPa时,复合材料的应力-应变为线弹性;随着应力的增加,材料模量减小,非弹性应变变大,复合材料的应力-应变行为表现为非线性直至断裂.复合材料的平均断裂强度和断裂应变分别为23426MPa和0.6%.拉伸破坏损伤表现为:基体开裂,横向纤维束开裂,界面层脱粘,纤维断裂,层间剥离和纤维束断裂.损伤累积后最终导致复合材料交叉编织节点处纤维束逐层断裂和拔出,形成斜口断裂和平口断裂.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号