首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Great advancements in commodity graphics hardware have favoured graphics processing unit (GPU)‐based volume rendering as the main adopted solution for interactive exploration of rectilinear scalar volumes on commodity platforms. Nevertheless, long data transfer times and GPU memory size limitations are often the main limiting factors, especially for massive, time‐varying or multi‐volume visualization, as well as for networked visualization on the emerging mobile devices. To address this issue, a variety of level‐of‐detail (LOD) data representations and compression techniques have been introduced. In order to improve capabilities and performance over the entire storage, distribution and rendering pipeline, the encoding/decoding process is typically highly asymmetric, and systems should ideally compress at data production time and decompress on demand at rendering time. Compression and LOD pre‐computation does not have to adhere to real‐time constraints and can be performed off‐line for high‐quality results. In contrast, adaptive real‐time rendering from compressed representations requires fast, transient and spatially independent decompression. In this report, we review the existing compressed GPU volume rendering approaches, covering sampling grid layouts, compact representation models, compression techniques, GPU rendering architectures and fast decoding techniques.  相似文献   

2.
吴晓莉  贺汉根 《计算机应用》2007,27(8):2011-2013
基于纹理的可视化方法可以描述流场的整体结构,但传统方法计算耗时,生成可视化图像对比度比较低。从加速可视化整体流程出发,提出了一种基于粒子纹理融合的流场可视化方法。此方法首先随机产生一组噪声图像作为初始粒子分布图,然后依次将初始粒子分布图与根据流动而变形的数据网格加权融合得到粒子轨迹图,最后一帧帧彼此相邻的粒子轨迹图组成一个流场的动态显示。该方法具有独立于流场数据、绘制速度快、生成图像对比度高的特点,参数物理意义明显,不同参数选择可得到不同视觉效果的可视化输出结果,能够充分利用现有硬件图形显示加速设备,已经被成功应用于空间晶体生长实验流场数据的可视化,获得了较好的效果。  相似文献   

3.
The selection of an appropriate global transfer function is essential for visualizing time‐varying simulation data. This is especially challenging when the global data range is not known in advance, as is often the case in remote and in‐situ visualization settings. Since the data range may vary dramatically as the simulation progresses, volume rendering using local transfer functions may not be coherent for all time steps. We present an exploratory technique that enables coherent classification of time‐varying volume data. Unlike previous approaches, which require pre‐processing of all time steps, our approach lets the user explore the transfer function space without accessing the original 3D data. This is useful for interactive visualization, and absolutely essential for in‐situ visualization, where the entire simulation data range is not known in advance. Our approach generates a compact representation of each time step at rendering time in the form of ray attenuation functions, which are used for subsequent operations on the opacity and color mappings. The presented approach offers interactive exploration of time‐varying simulation data that alleviates the cost associated with reloading and caching large data sets.  相似文献   

4.
体绘制技术在医学可视化中的新发展   总被引:13,自引:0,他引:13       下载免费PDF全文
科学计算可视化体绘制算法能反映出体数据的内部信息,在医学,它已经从辅诊断发展成为辅助治疗的重要手段,体可视化技术是医学可视化的重要研究内容,其处理过程包括体数据的获取,模型的建立,数据的映射,绘制等操作,该文介绍了医学可视化中常使用的几种光照模型,针对基于图象空间和对象空间两种体绘制算法,介绍了它们的基本思想方法,并详细阐述了在近期的主要加速技术和提高图象质量方法的新进展,最后给出了实验数据和结论。  相似文献   

5.
大区域地形可视化技术的研究   总被引:28,自引:0,他引:28       下载免费PDF全文
近年来,地形场景的实时绘制已受到人们越来越广泛的关注,目前已经提出的一系列场景加速绘制算法,虽然在不同的应用场合也取得了一定的效果,但都存在着局限性,尚不能满足大区域地形环境的实时高速绘制的要求,而与其密切相关的技术主要涉及到地形多分辨率表示、海量地形数据和纹理数据的分页管理、地形和纹理数据的LOD控制、地形和纹理数据的快速存取和更新等.为了能够对地形场景进行实时绘制,在对大区域地形数据管理和实时绘制技术进行研究和试验的基础上,对构建视相关动态多分辨率模型的方法进行了改进,实现了地形模型多分辨率表示与视相关的有机结合,并提出了一种高效的场景数据存取方法,进而实现了一个整合自适应三角网剖分、地形场景数据分页管理和动态更新等相关技术于一体的地形三维可视化系统,试验结果表明,该算法能够实时绘制地形场景,且质量较好.  相似文献   

6.
A practical approach to spectral volume rendering   总被引:1,自引:0,他引:1  
To make a spectral representation of color practicable for volume rendering, a new low-dimensional subspace method is used to act as the carrier of spectral information. With that model, spectral light material interaction can be integrated into existing volume rendering methods at almost no penalty. In addition, slow rendering methods can profit from the new technique of postillumination-generating spectral images in real-time for arbitrary light spectra under a fixed viewpoint. Thus, the capability of spectral rendering to create distinct impressions of a scene under different lighting conditions is established as a method of real-time interaction. Although we use an achromatic opacity in our rendering, we show how spectral rendering permits different data set features to be emphasized or hidden as long as they have not been entirely obscured. The use of postillumination is an order of magnitude faster than changing the transfer function and repeating the projection step. To put the user in control of the spectral visualization, we devise a new widget, a "light-dial", for interactively changing the illumination and include a usability study of this new light space exploration tool. Applied to spectral transfer functions, different lights bring out or hide specific qualities of the data. In conjunction with postillumination, this provides a new means for preparing data for visualization and forms a new degree of freedom for guided exploration of volumetric data sets  相似文献   

7.
In this paper, we present a novel method for the direct volume rendering of large smoothed‐particle hydrodynamics (SPH) simulation data without transforming the unstructured data to an intermediate representation. By directly visualizing the unstructured particle data, we avoid long preprocessing times and large storage requirements. This enables the visualization of large, time‐dependent, and multivariate data both as a post‐process and in situ. To address the computational complexity, we introduce stochastic volume rendering that considers only a subset of particles at each step during ray marching. The sample probabilities for selecting this subset at each step are thereby determined both in a view‐dependent manner and based on the spatial complexity of the data. Our stochastic volume rendering enables us to scale continuously from a fast, interactive preview to a more accurate volume rendering at higher cost. Lastly, we discuss the visualization of free‐surface and multi‐phase flows by including a multi‐material model with volumetric and surface shading into the stochastic volume rendering.  相似文献   

8.
Many different direct volume rendering methods have been developed to visualize 3D scalar fields on uniform rectilinear grids. However, little work has been done on rendering simultaneously various properties of the same 3D region measured with different registration devices or at different instants of time. The demand for this type of visualization is rapidly increasing in scientific applications such as medicine in which the visual integration of multiple modalities allows a better comprehension of the anatomy and a perception of its relationships with activity. This paper presents different strategies of direct multimodal volume rendering (DMVR). It is restricted to voxel models with a known 3D rigid alignment transformation. The paper evaluates at which steps of the rendering pipeline the data fusion must be realized in order to accomplish the desired visual integration and to provide fast re‐renders when some fusion parameters are modified. In addition, it analyses how existing monomodal visualization algorithms can be extended to multiple datasets and it compares their efficiency and their computational cost. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
Particle‐based simulation techniques, like the discrete element method or molecular dynamics, are widely used in many research fields. In real‐time explorative visualization it is common to render the resulting data using opaque spherical glyphs with local lighting only. Due to massive overlaps, however, inner structures of the data are often occluded rendering visual analysis impossible. Furthermore, local lighting is not sufficient as several important features like complex shapes, holes, rifts or filaments cannot be perceived well. To address both problems we present a new technique that jointly supports transparency and ambient occlusion in a consistent illumination model. Our approach is based on the emission‐absorption model of volume rendering. We provide analytic solutions to the volume rendering integral for several density distributions within a spherical glyph. Compared to constant transparency our approach preserves the three‐dimensional impression of the glyphs much better. We approximate ambient illumination with a fast hierarchical voxel cone‐tracing approach, which builds on a new real‐time voxelization of the particle data. Our implementation achieves interactive frame rates for millions of static or dynamic particles without any preprocessing. We illustrate the merits of our method on real‐world data sets gaining several new insights.  相似文献   

10.
The capability of current 3D acquisition systems to digitize the geometry reflection behaviour of objects as well as the sophisticated application of CAD techniques lead to rapidly growing digital models which pose new challenges for interaction and visualization. Due to the sheer size of the geometry as well as the texture and reflection data which are often in the range of several gigabytes, efficient techniques for analyzing, compressing and rendering are needed. In this talk I will present some of the research we did in our graphics group over the past years motivated by industrial partners in order to automate the data preparation step and allow for real‐time high quality rendering e.g. in the context of VR‐applications. Strength and limitations of the different techniques will be discussed and future challenges will be identified. The presentation will go along with live demonstrations.  相似文献   

11.
Large‐sized volume datasets have recently become commonplace and users are now demanding that volume‐rendering techniques to visualise such data provide acceptable results on relatively modest computing platforms. The widespread use of the Internet for the transmission and/or rendering of volume data is also exerting increasing demands on software providers. Multiresolution can address these issues in an elegant way. One of the fastest volume‐rendering alrogithms is that proposed by Lacroute & Levoy 1 , which is based on shear‐warp factorisation and min‐max octrees (MMOs). Unfortunately, since an MMO captures only a single resolution of a volume dataset, this method is unsuitable for rendering datasets in a multiresolution form. This paper adapts the above algorithm to multiresolution volume rendering to enable near‐real‐time interaction to take place on a standard PC. It also permits the user to modify classification functions and/or resolution during rendering with no significant loss of rendering speed. A newly‐developed data structure based on the MMO is employed, the multiresolution min‐max octree, M 3 O, which captures the spatial coherence for datasets at all resolutions. Speed is enhanced by the use of multiresolution opacity transfer functions for rapidly determining and discarding transparent dataset regions. Some experimental results on sample volume datasets are presented.  相似文献   

12.
Higher‐order finite element methods have emerged as an important discretization scheme for simulation. They are increasingly used in contemporary numerical solvers, generating a new class of data that must be analyzed by scientists and engineers. Currently available visualization tools for this type of data are either batch oriented or limited to certain cell types and polynomial degrees. Other approaches approximate higher‐order data by resampling resulting in trade‐offs in interactivity and quality. To overcome these limitations, we have developed a distributed visualization system which allows for interactive exploration of non‐conforming unstructured grids, resulting from space‐time discontinuous Galerkin simulations, in which each cell has its own higher‐order polynomial solution. Our system employs GPU‐based raycasting for direct volume rendering of complex grids which feature non‐convex, curvilinear cells with varying polynomial degree. Frequency‐based adaptive sampling accounts for the high variations along rays. For distribution across a GPU cluster, the initial object‐space partitioning is determined by cell characteristics like the polynomial degree and is adapted at runtime by a load balancing mechanism. The performance and utility of our system is evaluated for different aeroacoustic simulations involving the propagation of shock fronts.  相似文献   

13.
地震剖面图的绘制是二维地震数据可视化的基础。目前基于通用绘制引擎的地震剖面图绘制是在CPU上实现的,随着地震数据规模越来越大,传统绘制方法的绘制效率已经不能达到交互效率的要求,因此提出了一种地震剖面图快速绘制算法。该算法将地震数据的绘制和GPGPU技术相结合,利用GPU强大的并行计算能力实现图形光栅化处理。实验表明,在保证绘制效果的前提下,该方法极大地提高了绘制效率。  相似文献   

14.
脑科学是当今国际科技研究的前沿邻域,而对高精度脑成像数据进行可视化是脑神经科学在结构成像方面的基础性需求。针对高精度脑成像数据可视化过程中存在的数据量大以及绘制效率低的问题,提出了基于分类分层矢量量化和完美空间哈希相结合的压缩域可视化方法。首先对体数据进行分块,记录每块的平均值并依据块内体数据的平均梯度值是否为0进行分类;其次运用分层矢量量化对平均梯度值不为0的块进行压缩;然后用分块完美空间哈希技术存储压缩得到两个索引值;最后对上面的压缩体数据进行解码得到恢复体数据,采用分块完美空间哈希对原始体数据与恢复体数据作差得到的残差数据进行压缩。绘制时,只需将压缩得到的数据作为纹理加载到GPU内,即可在GPU内完成实时解压缩绘制。实验结果表明,在保证较好图像重构质量的前提下,该算法减少了数据的存储空间,提高了体可视化的绘制效率,从而可以在单机上处理较大的数据。  相似文献   

15.
光线投射算法中重采样的设计和实现   总被引:3,自引:0,他引:3       下载免费PDF全文
体绘制技术在医学成像和科学可视化领域有着极为广泛的应用,但由于其巨大的计算开销,限制了其实时动态体绘制的应用,因此许多研究人员致力于静态体绘制加速算法的研究,为了提高体绘制速度。分析了三维规则数据场重采样的原理。光线投射算法中对3D数据场重采样的实现方法;根据具体重建对象,提出了在3D数据场重采样中采用球形包围盒的方法,给出了人体头部和眼球的三维可视化结果,实验表明:这种算法能有效地减少重采样的计算量,并使求交计算更加简单。  相似文献   

16.
模板阴影体是矢量地图3维绘制的一种主要方法,使用线段、多边形等基本的几何图形在3维地形上叠加显示地图要素,因表示形式过于简单,导致其传递的地图要素信息十分有限。为此,对模板阴影体方法进行扩展,提出矢量地图在3维地形上的符号化叠加方法,以提供更丰富的矢量地图3维显示样式。首先,简述基于模板阴影体绘制矢量数据的基本原理。然后,提出对模板阴影体的扩展,包括保持符号边缘光滑的算法和符号轮廓描边、交叉压盖的处理方法。实验结果表明,该扩展方法能够实现矢量地图在3维地形上的实时叠加显示,符号化绘制显著提高了矢量地图显示效果。  相似文献   

17.
体视化是地学信息三维可视化研究的前沿技术之一,体绘制算法的效率直接关系到体视化的效果。本文在研究已有光线投射体绘制改进算法的基础上,提出利用线性八叉树数据结构对光线投射体绘制算法进行改进研究,不仅实现了体数据的压缩。而且能对压缩体数据进行直接体视化。在PC机上的实验表明,该方法具有时间复杂度与数据复杂度基本无关的特点.加速效果明显。最后,文章指出了该方法的适用范围。  相似文献   

18.
Multiresolution representation and visualization of volume data   总被引:2,自引:0,他引:2  
A system to represent and visualize scalar volume data at multiple resolution is presented. The system is built on a multiresolution model based on tetrahedral meshes with scattered vertices that can be obtained from any initial dataset. The model is built off-line through data simplification techniques, and stored in a compact data structure that supports fast on-line access. The system supports interactive visualization of a representation at an arbitrary level of resolution through isosurface and projective methods. The user can interactively adapt the quality of visualization to requirements of a specific application task and to the performance of a specific hardware platform. Representations at different resolutions can be used together to further enhance interaction and performance through progressive and multiresolution rendering  相似文献   

19.
Image‐ and data‐parallel rendering across multiple nodes on high‐performance computing systems is widely used in visualization to provide higher frame rates, support large data sets, and render data in situ. Specifically for in situ visualization, reducing bottlenecks incurred by the visualization and compositing is of key concern to reduce the overall simulation runtime. Moreover, prior algorithms have been designed to support either image‐ or data‐parallel rendering and impose restrictions on the data distribution, requiring different implementations for each configuration. In this paper, we introduce the Distributed FrameBuffer, an asynchronous image‐processing framework for multi‐node rendering. We demonstrate that our approach achieves performance superior to the state of the art for common use cases, while providing the flexibility to support a wide range of parallel rendering algorithms and data distributions. By building on this framework, we extend the open‐source ray tracing library OSPRay with a data‐distributed API, enabling its use in data‐distributed and in situ visualization applications.  相似文献   

20.
散乱点数据在机械产品测量造型、地理信息系统等众多领域来说都较易得到。为使VTK可视化平台中的数据处理及面显示应用面更广,本文设计了基于平坦度的自适应增量的网格构造算法,将散乱点数据格式转换成VTK数据格式,从而利用VTK流水线机制进行面绘制。该算法实现了空间直接三角剖分,而且动态调整逼近误差。实验证明,该算法能
高效、可靠地生成贴近原始曲面的三角网格,并取得较理想的VTK绘制效果。该算法对于三角剖分问题和VTK可视化平台的数据处理具有一定的理论和实际意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号