共查询到20条相似文献,搜索用时 15 毫秒
1.
David Adam Konstantin Karaghiosoff ThomasM. Klaptke Gerhard Holl Manfred Kaiser 《Propellants, Explosives, Pyrotechnics》2002,27(1):7-11
Triazidotrinitro benzene, 1,3,5‐(N3)3‐2,4,6‐(NO2)3C6 ( 1 ) was synthesized by nitration of triazidodinitro benzene, 1,3,5‐(N3)3‐2,4‐(NO2)2C6H with either a mixture of fuming nitric and concentrated sulfuric acid (HNO3/H2SO4) or with N2O5. Crystals were obtained by the slow evaporation of an acetone/acetic acid mixture at room temperature over a period of 2 weeks and characterized by single crystal X‐ray diffraction: monoclinic, P 21/c (no. 14), a=0.54256(4), b=1.8552(1), c=1.2129(1) nm, β=94.91(1)°, V=1.2163(2) nm3, Z=4, ϱ=1.836 g⋅cm−3, Rall =0.069. Triazidotrinitro benzene has a remarkably high density (1.84 g⋅cm−3). The standard heat of formation of compound 1 was computed at B3LYP/6‐31G(d, p) level of theory to be ΔH°f=765.8 kJ⋅mol−1 which translates to 2278.0 kJ⋅kg−1. The expected detonation properties of compound 1 were calculated using the semi‐empirical equations suggested by Kamlet and Jacobs: detonation pressure, P=18.4 GPa and detonation velocity, D=8100 m⋅s−1. 相似文献
2.
p‐Perfluoro{1‐[2‐(2‐fluorosulfonyl‐ethoxy)propoxy]}ethylated poly(α‐ methyl styrene) 3 was synthesized via electron transfer of perfluoro‐di{2‐[2‐(2‐fluorosulfonyl‐ethoxy)propoxy]}propionyl peroxide 2 and poly(α‐methyl styrene) 1 at different reactant molar ratios (2 : 1). The modified polymer 3 was characterized by various techniques. The ring p‐substitution was proved by FTIR and 19FNMR. The desulfonation appeared at above 124°C was found by TGA. The molecular weight determined by GPC increased with the increase of reactant molar ratio, and the polydispersity values indicated there was no degradation of the parent polymer chain in the reaction. Followed by hydrolysis and acidification, the modified polymer 3 could be further quantitatively converted into its sulfonic form 4. Ion exchange capacity of novel polyelectrolyte 4 can be controlled by changing reactant molar ratio (2 : 1). © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 3615–3618, 2006 相似文献
3.
Gaetano Giammona Gennara Cavallaro Giovanna Pitarresi Elisa Pedone 《Polymer International》2000,49(1):93-98
In the present study the derivatization of two water‐soluble synthetic polymers, α,β‐poly(N‐2‐hydroxyethyl)‐DL ‐aspartamide (PHEA) and α,β‐polyasparthylhydrazide (PAHy), with glycidyltrimethylammonium chloride (GTA) is described. This reaction permits the introduction of positive charges in the macromolecular chains of PHEA and PAHy in order to make easier the electrostatic interaction with DNA. Different parameters affect the reaction of derivatization, such as GTA concentration and reaction time. PHEA reacts partially and slowly with GTA; on the contrary the reaction of PAHy with GTA is more rapid and extensive. The derivatization of PHEA and PAHy with GTA is a convenient method to introduce positive groups in their chains and it permits the preparation of interpolyelectrolyte complexes with DNA. © 2000 Society of Chemical Industry 相似文献
4.
M. Fekry Ismail Nabil A. Shams Abdel Momen A. El-Khamry Omnia E. A. Mostafa 《Advanced Synthesis \u0026amp; Catalysis》1984,326(5):799-803
6(α-Styryl)pyridazin-3(2H)-ones ( 1a – e ) reacted with phenylmagnesium bromide and/or methylmagnesium iodide to give the 1,4-addition products, 4-phenyl and/or 4-methyl-6-(α-styryl)pyridazin-3(2H)-ones ( 3a–e ). The structures assigned to the products are established by electronic and infrared spectroscopy and by synthesis of authentic samples in most cases. 相似文献
5.
Different hydroxyl content poly(styrene‐co‐p‐(hexafluoro‐2‐hydroxylisopropyl)‐α‐methylstyene) [PS(OH)‐X] copolymers were synthesized and blends with 2,2,6,6‐tetramrthyl‐piperdine‐1‐oxyl end spin‐labeled PEO [SLPEO] were prepared. The miscibility behavior of all the blends was predicted by comparing the critical miscible polymer–polymer interaction parameter (χcrit) with the polymer–polymer interaction parameter (χ). The micro heterogeneity, chain motion, and hydrogen bonding interaction of the blends were investigated by the ESR spin label method. Two spectral components with different rates of motion were observed in the ESR composite spectra of all the blends, indicating the existence of microheterogeneity at the molecular level. According to the variations of ESR spectral parameters Ta, Td, ΔT, T50G and τc, with the increasing hydroxyl content in blends, it was shown that the extent of miscibility was progressively enhanced due to the controllable hydrogen bonding interaction between the hydroxyl in PS(OH) and the ether oxygen in PEO. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2312–2317, 2004 相似文献
6.
P. Simes L. Pedroso A. Portugal P. Carvalheira J. Campos 《Propellants, Explosives, Pyrotechnics》2001,26(6):273-277
This paper reports a study of the synthesis and characterization of 4,6‐dinitroamino‐1,3,5‐triazine‐2(1 H)‐one (DNAM) carried out under the perspective of looking for new ingredients in propellant formulations. Emphasis is given to the characterization of DNAM. The following attributes were identified: low sensitivity to impact and friction, thermal stability over a wide temperature range, energetic nature, high density, and interesting particle size distribution. In Part 2 a preliminary evaluation of DNAM capabilities in a propellant formulation will be presented. 相似文献
7.
Copolymerization of ethylene with 1‐octadecene was studied using [η5:η1‐C5Me4‐4‐R1‐6‐R‐C6H2O]TiCl2 [R1 = tBu (1), H (2, 3, 4); R = tBu (1, 2), Me (3), Ph (4)] as catalysts in the presence of Al(i‐Bu)3 and [Ph3C][B(C6F5)4]. The effect of the concentration of comonomer in the feed and Al/Ti molar ratio on the catalytic activity and molecular weight of the resultant copolymer were investigated. The substituents on the phenyl ring of the ligand affect considerably both the catalytic activity and comonomer incorporation. The 1 /Al(i‐Bu)3/[Ph3C][B(C6F5)4] catalyst system exhibits the highest catalytic activity and produces copolymers with the highest molecular weight, while the 2 /Al(i‐Bu)3/[Ph3C][B(C6F5)4] catalyst system gives copolymers with the highest comonomer incorporation under similar conditions. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
8.
Qianhong Yi Dehui Liang Qing Ma Ming Huang Bisheng Tan Yucun Liu Yu Chi 《Propellants, Explosives, Pyrotechnics》2016,41(5):906-911
The energetic material 3‐(4‐aminofurazan‐3‐yl)‐4‐(4‐nitrofurazan‐3‐yl)furazan (ANTF) with low melting‐point was synthesized by means of an improved oxidation reaction from 3,4‐bis(4′‐aminofurazano‐3′‐yl)furazan. The structure of ANTF was confirmed by 13C NMR spectroscopy, mass spectrometry, and the crystal structure was determined by X‐ray diffraction. ANTF crystallized in monoclinic system P21/c, with a crystal density of 1.785 g cm−3 and crystal parameters a=6.6226(9) Å, b=26.294(2) Å, c=6.5394(8) Å, β=119.545(17)°, V=0.9907(2) nm3, Z=4, μ=0.157 mm−1, F(000)=536. The thermal stability and non‐isothermal kinetics of ANTF were studied by differential scanning calorimetry (DSC) with heating rates of 2.5, 5, 10, and 20 K min−1. The apparent activation energy (Ea) of ANTF calculated by Kissinger's equation and Ozawa's equation were 115.9 kJ mol−1 and 112.6 kJ mol−1, respectively, with the pre‐exponential factor lnA=21.7 s−1. ANTF is a potential candidate for the melt‐cast explosive with good thermal stability and detonation performance. 相似文献
9.
In this work, 2‐(3‐p‐bromophenyl‐3‐methylcyclobutyl)‐2‐hydroxyethylmethacrylate (BPHEMA) [monomer] was synthesized by the addition of methacrylic acid to 1‐epoxyethyl‐3‐bromophenyl‐3‐methyl cyclobutane. The monomer and poly(BPHEMA) were characterized by FT‐IR and [1H] and [13C]NMR. Average molecular weight, glass transition temperature, solubility parameter, and density of the polymer were also determined. Thermal degradation of poly[BPHEMA] was studied by thermogravimetry (TG), FT‐IR. Programmed heating was carried out at 10 °C min−1 from room temperature to 500 °C. The partially degraded polymer was examined by FT‐IR spectroscopy. The degradation products were identified by using FT‐IR, [1H] and [13C]NMR and GC‐MS techniques. Depolymerization is the main reaction in thermal degradation of the polymer up to about 300 °C. Percentage of the monomer in CRF (Cold Ring Fraction) was estimated at 33% in the peak area of the GC curve. Intramolecular cyclization and cyclic anhydride type structures were observed at temperatures above 300 °C. The liquid products of the degradation, formation of anhydride ring structures and mechanism of degradation are discussed. © 1999 Society of Chemical Industry 相似文献
10.
Jun Young Kim Ji Won Lee Young Soo Kim Yuno Lee Dr. Young Bae Ryu Songmi Kim Hyung Won Ryu Marcus J. Curtis‐Long Prof. Dr. Keun Woo Lee Dr. Woo Song Lee Prof. Dr. Ki Hun Park 《Chembiochem : a European journal of chemical biology》2010,11(15):2125-2131
Competitive glycosidase inhibitors are generally sugar mimics that are costly and tedious to obtain because they require challenging and elongated chemical synthesis, which must be stereo‐ and regiocontrolled. Here, we show that readily accessible achiral (E)‐1‐phenyl‐3‐(4‐strylphenyl)ureas are potent competitive α‐glucosidase inhibitors. A systematic synthesis study shows that the 1‐phenyl moiety on the urea is critical for ensuring competitive inhibition, and substituents on both terminal phenyl groups contribute to inhibition potency. The most potent inhibitor, compound 12 (IC50=8.4 μM , Ki=3.2 μM ), manifested a simple slow‐binding inhibition profile for α‐glucosidase with the kinetic parameters k3=0.005256 μM ?1 min?1, k4=0.003024 min?1, and ${K{{{\rm app}\hfill \atop {\rm i}\hfill}}}$ =0.5753 μM . 相似文献
11.
Poly‐α,β‐(3‐hydroxypropyl)‐DL ‐aspartamide (PHPA) was synthesized by the ring‐open reaction of polysuccinimide (PSI) and 3‐hydroxypropylamine. The polymer was characterized by 1H‐NMR, 13C‐NMR, FTIR, and GPC. Mark–Houwink coefficients were obtained from viscometry and GPC measurements, K = 5.53 × 10−3 and α = 0.78 in water. The acute toxicity of PHPA was examined and it revealed no death in ICR mice up to the dose treated of 15.3 kg/kg, and hematological parameters showed no significant difference between treated and control animals. The potential use of PHPA as a drug carrier was also investigated. In a typical case, a contraceptive drug, norethindrone (NET), was bonded to PHPA, and the drug sustained released as long as 120 days an in vitro test. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2411–2417, 2000 相似文献
12.
Prashant S. Kharkar Dr. Angela M. Batman Juan Zhen Dr. Patrick M. Beardsley Prof. Maarten E. A. Reith Prof. Aloke K. Dutta Prof. 《ChemMedChem》2009,4(7):1075-1085
A novel series of optically active molecules based on a 4‐(2‐(benzhydryloxy)ethyl)‐1‐((R)‐2‐hydroxy‐2‐phenylethyl)‐piperidin‐3‐ol template were developed. Depending on stereochemistry, the compounds exhibit various degrees of affinity for three dopamine, serotonin, and norepinephrine transporters. These molecules have the potential for treating several neurological disorders such as drug abuse, depression, and attention deficit hyperactivity disorder.
13.
An exhaust application method for 4,6-( p - β -sulphatoethylsulphonyl)anilino-1,3,5-triazin-2(1 H )-one to dried lyocell fibre has been developed. The procedure employs a temperature gradient technique with all of the salt and alkali present at the start. This method gives consistent wet abrasion resistance values with a standard deviation only marginally inferior to Tencel A100. Subsequent dyeing of lyocell fibres, in turn with two reactive dyes, gave build-up profiles indistinguishable from untreated fibre. The lyocell–agent bonding was stable to high temperature polyester dyeing conditions at pH 6, but unexpectedly showed some instability (as evidenced by a fall in wet abrasion resistance values) when subjected to base-catalysed reactive dyeing conditions. 相似文献
14.
Gabor Laurenczy Matthieu Faure Ludovic Vieille‐Petit Georg Süss‐Fink ThomasR. Ward 《Advanced Synthesis \u0026amp; Catalysis》2002,344(10):1073-1077
In situ high‐pressure NMR spectroscopy of the hydrogenation of benzene to give cyclohexane, catalysed by the cluster cation [(η6‐C6H6) (η6‐C6Me6)2Ru3(μ3‐O)(μ2‐OH)(μ2‐H)2]+ 2 , supports a mechanism involving a supramolecular host‐guest complex of the substrate molecule in the hydrophobic pocket of the intact cluster molecule. 相似文献
15.
Two low‐viscosity monomers, 2‐(acryloyloxy)ethyl piperidine‐1‐carboxylate (AEPC II) and 2‐(acryloyloxy)ethyl morpholone‐4‐carboxylate (AEMC), were synthesized with a non‐isocyanate route. The photopolymerization kinetics was monitored by real‐time infrared spectroscopy with a horizontal sample holder. The results indicated that AEPC II and AEMC had high ultraviolet curing rates and final double‐bond conversions, which could reach 90 and 95%, respectively. The glass‐transition temperatures of AEPC II/urethane acrylate resin (1/4 w/w), AEMC/urethane acrylate resin (1/4 w/w), and isobornyl acrylate/urethane acrylate resin (1/4 w/w) mixtures were 37.5, 45.6, and 57°C, respectively. The crosslink density of the AEMC/urethane acrylate resin (1/4 w/w) mixture was lower than that of the isobornyl acrylate/urethane acrylate resin (1/4 w/w) mixture. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
16.
Jian‐Xin Ji TerryT.‐L. Au‐Yeung Jing Wu ChiuWing Yip AlbertS.C. Chan 《Advanced Synthesis \u0026amp; Catalysis》2004,346(1):42-44
The first catalytic synthesis of β,γ‐alkynyl α‐amino acid derivatives was achieved by direct addition of terminal alkynes to α‐imino esters in the presence of an Ag(I) salt under mild reaction conditions. 相似文献
17.
Zhenting Yue Wenbo Li Lu Liu Cuihong Wang Junliang Zhang 《Advanced Synthesis \u0026amp; Catalysis》2016,358(19):3015-3020
4H‐Pyran units are frequently present in molecules with significant biological and pharmaceutical activities. Herein, we present the first enantioselective formal [3+3] cycloaddition between 2‐(1‐alkynyl)‐2‐alken‐1‐ones and β‐keto esters catalyzed by a cyclohexyldiamine‐based thiourea‐tertiary amine bifunctional catalyst. Under the mild and eco‐friendly conditions, a wide range of polysubstituted 4H‐pyrans were obtained in moderate yields with good enantioselectivities.
18.
19.
Alessandra Lattanzi 《Advanced Synthesis \u0026amp; Catalysis》2006,348(3):339-346
The asymmetric epoxidation of α,β‐enones by the readily available bis(3,5‐dimethylphenyl)‐(S)‐pyrrolidin‐2‐ylmethanol and tert‐butyl hydroperoxide (TBHP) is described. Stereoelectronic substitution on the aryl moiety of diaryl‐2‐pyrrolidinemethanols was found to significantly affect the efficiency with respect to the previously reported (S)‐diphenyl‐2‐pyrrolidinemethanol. Improved reactivity and enantioselectivity were achieved with bis(3,5‐dimethylphenyl)‐(S)‐pyrrolidin‐2‐ylmethanol at reduced catalyst loading (20 mol %) with ees up to 94% for chalcone epoxides under mild reaction conditions, whereas (S)‐diphenyl‐2‐pyrrolidinemethanol afforded a maximum ee of 80%. Interestingly, the methodology is applicable to the epoxidation of more challenging aliphatic or enolizable enones with good control of the asymmetric induction (up to 87% ee). 相似文献
20.
Ko Hoon Kim Hye Ran Moon Junseong Lee Jae Nyoung Kim 《Advanced Synthesis \u0026amp; Catalysis》2015,357(4):701-708
The palladium‐catalyzed, one‐pot arylative cyclization of 3‐(γ,δ‐disubstituted)allylidene‐2‐oxindoles afforded spirodihydronaphthalene‐2‐oxindole frameworks via an oxidative Heck arylation (Fujiwara–Moritani reaction), an allylic palladium migration, and an aryl C H bond functionalization/arylation cascade of reactions. This is a first example of the palladium‐catalyzed oxidative arylation and an aryl C H bond functionalization/arylation cascade reaction which involves an electrophilic arylative quenching of a π‐allylpalladium intermediate and a regio‐controlled aryl C H bond activation assisted by a weak palladium‐arene interaction.