首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthesizing the movements of a responsive virtual character in the event of unexpected perturbations has proven a difficult challenge. To solve this problem, we devise a fully automatic method that learns a nonlinear probabilistic model of dynamic responses from very few perturbed walking sequences. This model is able to synthesize responses and recovery motions under new perturbations different from those in the training examples. When perturbations occur, we propose a physics‐based method that initiates motion transitions to the most probable response example based on the dynamic states of the character. Our algorithm can be applied to any motion sequences without the need for preprocessing such as segmentation or alignment. The results show that three perturbed motion clips can sufficiently generate a variety of realistic responses, and 14 clips can create a responsive virtual character that reacts realistically to external forces in different directions applied on different body parts at different moments in time.  相似文献   

2.
Creating realistic human movement is a time consuming and labour intensive task. The major difficulty is that the user has to edit individual joints while maintaining an overall realistic and collision free posture. Previous research suggests the use of data‐driven inverse kinematics, such that one can focus on the control of a few joints, while the system automatically composes a natural posture. However, as a common problem of kinematics synthesis, penetration of body parts is difficult to avoid in complex movements. In this paper, we propose a new data‐driven inverse kinematics framework that conserves the topology of the synthesizing postures. Our system monitors and regulates the topology changes using the Gauss Linking Integral (GUI), such that penetration can be efficiently prevented. As a result, complex motions with tight body movements, as well as those involving interaction with external objects, can be simulated with minimal manual intervention. Experimental results show that using our system, the user can create high quality human motion in real‐time by controlling a few joints using a mouse or a multi‐touch screen. The movement generated is both realistic and penetration free. Our system is best applied for interactive motion design in computer animations and games.  相似文献   

3.
An increasing number of projects have examined the perceptual magnitude of visible artifacts in animated motion. These studies have been performed using a mix of character types, from detailed human models to abstract geometric objects such as spheres. We explore the extent to which character morphology influences user sensitivity to errors in a fixed set of ballistic motions replicated on three different character types. We find user sensitivity responds to changes in error type or magnitude in a similar manner regardless of character type, but that users display a higher sensitivity to some types of errors when these errors are displayed on more human‐like characters. Further investigation of those error types suggests that being able to observe a period of preparatory motion before the onset of ballistic motion may be important. However, we found no evidence to suggest that a mismatch between the preparatory phase and the resulting ballistic motion was responsible for the higher sensitivity to errors that was observed for the most humanlike character.  相似文献   

4.
Performance has a spontaneity and “aliveness” that can be difficult to capture in more methodical animation processes such as keyframing. Access to performance animation has traditionally been limited to either low degree of freedom characters or required expensive hardware. We present a performance-based animation system for humanoid characters that requires no special hardware, relying only on mouse and keyboard input. We deal with the problem of controlling such a high degree of freedom model with low degree of freedom input through the use of correlation maps which employ 2D mouse input to modify a set of expressively relevant character parameters. Control can be continuously varied by rapidly switching between these maps. We present flexible techniques for varying and combining these maps and a simple process for defining them. The tool is highly configurable, presenting suitable defaults for novices and supporting a high degree of customization and control for experts. Animation can be recorded on a single pass, or multiple layers can be used to increase detail. Results from a user study indicate that novices are able to produce reasonable animations within their first hour of using the system. We also show more complicated results for walking and a standing character that gestures and dances.  相似文献   

5.
Animations of characters with flexible bodies such as jellyfish, snails, and, hearts are difficult to design using traditional skeleton‐based approaches. A standard approach is keyframing, but adjusting the shape of the flexible body for each key frame is tedious. In addition, the character cannot dynamically adjust its motion to respond to the environment or user input. This paper introduces a new procedural deformation framework (ProcDef) for designing and driving animations of such flexible objects. Our approach is to synthesize global motions procedurally by integrating local deformations. ProcDef provides an efficient design scheme for local deformation patterns; the user can control the orientation and magnitude of local deformations as well as the propagation of deformation signals by specifying line charts and volumetric fields. We also present a fast and robust deformation algorithm based on shape‐matching dynamics and show some example animations to illustrate the feasibility of our framework.  相似文献   

6.
Many data‐driven animation techniques are capable of producing high quality motions of human characters. Few techniques, however, are capable of generating motions that are consistent with physically simulated environments. Physically simulated characters, in contrast, are automatically consistent with the environment, but their motions are often unnatural because they are difficult to control. We present a model‐predictive controller that yields natural motions by guiding simulated humans toward real motion data. During simulation, the predictive component of the controller solves a quadratic program to compute the forces for a short window of time into the future. These forces are then applied by a low‐gain proportional‐derivative component, which makes minor adjustments until the next planning cycle. The controller is fast enough for interactive systems such as games and training simulations. It requires no precomputation and little manual tuning. The controller is resilient to mismatches between the character dynamics and the input motion, which allows it to track motion capture data even where the real dynamics are not known precisely. The same principled formulation can generate natural walks, runs, and jumps in a number of different physically simulated surroundings.  相似文献   

7.
Decomposing an input image into its intrinsic shading and reflectance components is a long‐standing ill‐posed problem. We present a novel algorithm that requires no user strokes and works on a single image. Based on simple assumptions about its reflectance and luminance, we first find clusters of similar reflectance in the image, and build a linear system describing the connections and relations between them. Our assumptions are less restrictive than widely‐adopted Retinex‐based approaches, and can be further relaxed in conflicting situations. The resulting system is robust even in the presence of areas where our assumptions do not hold. We show a wide variety of results, including natural images, objects from the MIT dataset and texture images, along with several applications, proving the versatility of our method.  相似文献   

8.
In this paper, we propose an online motion capture marker labeling approach for multiple interacting articulated targets. Given hundreds of unlabeled motion capture markers from multiple articulated targets that are interacting each other, our approach automatically labels these markers frame by frame, by fitting rigid bodies and exploiting trained structure and motion models. Advantages of our approach include: 1) our method is an online algorithm, which requires no user interaction once the algorithm starts. 2) Our method is more robust than traditional the closest point-based approaches by automatically imposing the structure and motion models. 3) Due to the use of the structure model which encodes the rigidity of each articulated body of captured targets, our method can recover missing markers robustly. Our approach is efficient and particularly suited for online computer animation and video game applications.  相似文献   

9.
Despite their high popularity, common high dynamic range (HDR) methods are still limited in their practical applicability: They assume that the input images are perfectly aligned, which is often violated in practise. Our paper does not only free the user from this unrealistic limitation, but even turns the missing alignment into an advantage: By exploiting the multiple exposures, we can create a super‐resolution image. The alignment step is performed by a modern energy‐based optic flow approach that takes into account the varying exposure conditions. Moreover, it produces dense displacement fields with subpixel precision. As a consequence, our approach can handle arbitrary complex motion patterns, caused by severe camera shake and moving objects. Additionally, it benefits from several advantages over existing strategies: (i) It is robust under outliers (noise, occlusions, saturation problems) and allows for sharp discontinuities in the displacement field. (ii) The alignment step neither requires camera calibration nor knowledge of the exposure times. (iii) It can be efficiently implemented on CPU and GPU architectures. After the alignment is performed, we use the obtained subpixel accurate displacement fields as input for an energy‐based, joint super‐resolution and HDR (SR‐HDR) approach. It introduces robust data terms and anisotropic smoothness terms in the SR‐HDR literature. Our experiments with challenging real world data demonstrate that these novelties are pivotal for the favourable performance of our approach.  相似文献   

10.
11.
In this paper, we present a rapid prototyping framework for GPU‐based volume rendering. Therefore, we propose a dynamic shader pipeline based on the SuperShader concept and illustrate the design decisions. Also, important requirements for the development of our system are presented. In our approach, we break down the rendering shader into areas containing code for different computations, which are defined as freely combinable, modularized shader blocks. Hence, high‐level changes of the rendering configuration result in the implicit modification of the underlying shader pipeline. Furthermore, the prototyping system allows inserting custom shader code between shader blocks of the pipeline at run‐time. A suitable user interface is available within the prototyping environment to allow intuitive modification of the shader pipeline. Thus, appropriate solutions for visualization problems can be interactively developed. We demonstrate the usage and the usefulness of our framework with implementations of dynamic rendering effects for medical applications.  相似文献   

12.
Continuous constrained optimization is a powerful tool for synthesizing novel human motion segments that are short. Graph‐based motion synthesis methods such as motion graphs and move trees are popular ways to synthesize long motions by playing back a sequence of existing motion segments. However, motion graphs only support transitions between similar frames, and move trees only support transitions between the end of one motion segment and the start of another. In this paper, we introduce an optimization‐based graph that combines continuous constrained optimization with graph‐based motion synthesis. The constrained optimization is used to create a vast number of complex realistic‐looking transitions in the graph. The graph can then be used to synthesize long motions with non‐trivial transitions that for example allow the character to switch its behavior abruptly while retaining motion naturalness. We also propose to build this graph semi‐autonomously by requiring a user to classify generated transitions as acceptable or not and explicitly minimizing the amount of required classifications. This process guarantees the quality consistency of the optimization‐based graph at the cost of limited user involvement.  相似文献   

13.
This paper presents an efficient technique for synthesizing motions by stitching, or splicing, an upper‐body motion retrieved from a motion space on top of an existing lower‐body locomotion of another motion. Compared to the standard motion splicing problem, motion space splicing imposes new challenges as both the upper and lower body motions might not be known in advance. Our technique is the first motion (space) splicing technique that propagates temporal and spatial properties of the lower‐body locomotion to the newly generated upper‐body motion and vice versa. Whereas existing techniques only adapt the upper‐body motion to fit the lower‐body motion, our technique also adapts the lower‐body locomotion based on the upper body task for a more coherent full‐body motion. In this paper, we will show that our decoupled approach is able to generate high‐fidelity full‐body motion for interactive applications such as games.  相似文献   

14.
Motion based Painterly Rendering   总被引:1,自引:0,他引:1  
Previous painterly rendering techniques normally use image gradients for deciding stroke orientations. Image gradients are good for expressing object shapes, but difficult to express the flow or movements of objects. In real painting, the use of brush strokes corresponding to the actual movement of objects allows viewers to recognize objects' motion better and thus to have an impression of the dynamic. In this paper, we propose a novel painterly rendering algorithm to express dynamic objects based on their motion information. We first extract motion information (magnitude, direction, standard deviation) of a scene from a set of consecutive image sequences from the same view. Then the motion directions are used for determining stroke orientations in the regions with significant motions, and image gradients determine stroke orientations where little motion is observed. Our algorithm is useful for realistically and dynamically representing moving objects. We have applied our algorithm for rendering landscapes. We could segment a scene into dynamic and static regions, and express the actual movement of dynamic objects using motion based strokes.  相似文献   

15.
This study aims to develop a controller for use in the online simulation of two interacting characters. This controller is capable of generalizing two sets of interaction motions of the two characters based on the relationships between the characters. The controller can exhibit similar motions to a captured human motion while reacting in a natural way to the opponent character in real time. To achieve this, we propose a new type of physical model called a coupled inverted pendulum on carts that comprises two inverted pendulum on a cart models, one for each individual, which are coupled by a relationship model. The proposed framework is divided into two steps: motion analysis and motion synthesis. Motion analysis is an offline preprocessing step, which optimizes the control parameters to move the proposed model along a motion capture trajectory of two interacting humans. The optimization procedure generates a coupled pendulum trajectory which represents the relationship between two characters for each frame, and is used as a reference in the synthesis step. In the motion synthesis step, a new coupled pendulum trajectory is planned reflecting the effects of the physical interaction, and the captured reference motions are edited based on the planned trajectory produced by the coupled pendulum trajectory generator. To validate the proposed framework, we used a motion capture data set showing two people performing kickboxing. The proposed controller is able to generalize the behaviors of two humans to different situations such as different speeds and turning speeds in a realistic way in real time.  相似文献   

16.
We propose 2D stick figures as a unified medium for visualizing and searching for human motion data. The stick figures can express a wide range or human motion, and they are easy to be drawn by people without any professional training. In our interface, the user can browse overall motion by viewing the stick figure images generated from the database and retrieve them directly by using sketched stick figures as an input query. We started with a preliminary survey to observe how people draw stick figures. Based on the rules observed from the user study, we developed an algorithm converting motion data to a sequence of stick figures. The feature‐based comparison method between the stick figures provides an interactive and progressive search for the users. They assist the user's sketching by showing the current retrieval result at each stroke. We demonstrate the utility of the system with a user study, in which the participants retrieved example motion segments from the database with 102 motion files by using our interface.  相似文献   

17.
We present a method for capturing the skeletal motions of humans using a sparse set of potentially moving cameras in an uncontrolled environment. Our approach is able to track multiple people even in front of cluttered and non‐static backgrounds, and unsynchronized cameras with varying image quality and frame rate. We completely rely on optical information and do not make use of additional sensor information (e.g. depth images or inertial sensors). Our algorithm simultaneously reconstructs the skeletal pose parameters of multiple performers and the motion of each camera. This is facilitated by a new energy functional that captures the alignment of the model and the camera positions with the input videos in an analytic way. The approach can be adopted in many practical applications to replace the complex and expensive motion capture studios with few consumer‐grade cameras even in uncontrolled outdoor scenes. We demonstrate this based on challenging multi‐view video sequences that are captured with unsynchronized and moving (e.g. mobile‐phone or GoPro) cameras.  相似文献   

18.
In this paper, we present an automated system for generating context‐preserving route maps that depict navigation routes as a path between nodes and edges inside a topographic network. Our application identifies relevant context information to support navigation and orientation, and generates customizable route maps according to design principles that communicate all relevant context information clearly visible on one single page. Interactive scaling allows seamless transition between the original undistorted map and our new map design, and supports user‐specified scaling of regions of interest to create personalized driving directions according to the drivers needs.  相似文献   

19.
We present a novel L4RW (Laziness‐based Realistic Real‐time Responsive Rebalance in Walking) technique to synthesize 4RW animations under unexpected external perturbations with minimal locomotion effort. We first devise a lazy dynamic rebalance model, which specifies the dynamic balance conditions, defines the rebalance effort, and selects the suitable rebalance strategy automatically using the laziness law after an unexpected perturbation. Based on the model, L4RW searches over a motion capture (mocap) database for an appropriate motion segment to follow, and the transition‐to motions is generated by interpolating the active response dynamic motion. A support vector machine (SVM) based training, classification, and predication algorithm is applied to reduce the search space, and it is trained offline only once. Our algorithm classifies the mocap database into many rebalance strategy‐specified subsets and then online predicts responsive motions in the subset according to the selected strategy. The rebalance effort, the ‘extrapolated center of mass’ (XCoM) and environment constraints are selected as feature attributes for the SVM feature vector. Furthermore, the subset's segments are sorted through the rebalance effort, then our algorithm searches for an acceptable segment starting from the least‐effort segment. Compared with previous methods, our search increases speed by over two orders of magnitude, and our algorithm creates more realistic and smooth 4RW animation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号