首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 66 毫秒
1.
镁合金自修复涂层研究进展   总被引:3,自引:0,他引:3  
镁合金的耐蚀性较差,使用过程常需要防护涂层。然而,涂层在使用过程中不可避免地遭到破坏,亟需开发自修复涂层以防止涂层破坏处的局部腐蚀。结合国内外在自修复涂层尤其是镁合金自修复涂层领域的研究成果,总结了自修复涂层的类型,包括化学转化膜型、掺杂型、填充型、微容器型、层层组装型和超分子本质修复型等。其中化学转化膜型承载的修复剂有限;掺杂型工艺简单,但可能降低涂层的稳定性;填充型可以减少修复剂对涂层稳定性的影响,但是可能降低层间结合力;微容器型可以阻隔涂层基体和修复剂,但需要满足多种条件;层层组装型能承载更多修复剂且修复过程更加智能;超分子本质修复型可以实现多次修复,但是修复过程常需要外部能量输入。通过比较各类涂层的特点,为研究者设计自修复涂层提供参考,并指出自修复涂层的设计需要根据实际情况,综合各类涂层的特点,完成修复剂的成功封装与释放,在保证涂层屏蔽性的基础上,赋予涂层自修复能力。  相似文献   

2.
王华  刘艳艳 《表面技术》2023,52(11):1-22, 127
镁合金是一种有发展前途的绿色工程金属材料,但其较差的抗腐蚀性能限制了它的大规模应用。对镁合金表面进行超疏水处理,能够极大地提高镁合金的耐腐蚀性能。当超疏水试样浸泡在腐蚀溶液中时,该结构将在腐蚀介质中形成固-气-液界面层,减少镁合金表面与腐蚀介质之间的接触面积,从而降低腐蚀速度。超疏水表面需要满足微纳米结构和低表面能2个必要条件。可以采用二步法或一步法在镁合金表面制备超疏水表面,详细介绍了在镁合金表面构造微纳米结构的方法,包括激光处理、机加工、化学刻蚀、化学镀、电化学沉积、阳极氧化、微弧氧化、水热合成和喷涂等方法。超疏水表面一旦受到机械损伤,微纳米结构无法满足条件,超疏水表面的“气垫效应”消失,腐蚀介质就会直接与微纳米结构接触,因此需要保证构建的微纳米粗糙结构对镁基体具有良好的保护作用并具有自愈功能。通过制备复合涂层,提高下层微纳米结构的自愈合性能,上层涂层的超疏水性与下层涂层的良好物理屏障能力的协同效应可以改善涂层的长久耐腐蚀性能。综述了在镁合金上制备具有良好耐腐蚀性能的复合超疏水表面的方法,并对镁合金超疏水表面防护技术的研究方向进行了展望。  相似文献   

3.
镁合金的表面处理及其发展趋势   总被引:40,自引:12,他引:40  
综述了镁合金的化学转化膜,阳极氧化,微弧氧化以及化学镀等表面处理方法,总结了镁合金防护中的发展趋势。  相似文献   

4.
镁合金上的纯镁表面涂层   总被引:2,自引:0,他引:2  
镁及其合金的主要缺点是它的耐蚀性能低,镁的标准电位是金属工程材料中最低的。镁的耐蚀性能是因重金属杂质Fe、Ni、Cu的添加而恶化。为提高镁合金的耐蚀性,采取了如电镀、阳极化处理和化学转变等表面改性技术。但是,当再次回收时,电镀层的镍、铜等严重影响镁的耐蚀性能。而阳极化处理和化学处理用的铬氧化物因为有毒而限制其使用。日本姬路技术学院的学者通过在镁合金表面沉淀纯镁涂层以提高其耐蚀性能。 实验过程 加热炉由5个可分别控制温度的加热段组成,加热区内径为φ30mm×900mm不锈钢管。在不同温度下蒸汽压的变化和不同元素…  相似文献   

5.
镁合金表面处理的研究进展   总被引:7,自引:0,他引:7  
综述了热喷涂、表面激光熔覆、化学转化膜、阳极氧化、等离子微弧氧化、表面渗层处理、表面电镀、迭克罗表面涂层和协合涂层等方法在镁合金表面处理中的应用,总结并展望了镁合金表面处理的发展趋势。  相似文献   

6.
镁合金凭借其优异的生物安全性、良好的载荷传递性及独特的降解性,在医用植入领域表现出巨大的应用潜力和发展前景。然而镁合金在生理环境下的腐蚀溶解速率过快,导致材料力学性能衰减加速进而过早失效。表面改性作为镁合金耐蚀性能提升的重要途径,不仅能通过表层物理屏障的形成来减缓金属材料的溶解速率,还能抑制合金内部腐蚀电偶反应的强烈程度及调控其生物相容性。概述了典型表面改性工艺的技术优势,包括涂层在合金表面的多覆盖度、高膜层厚度、强附着力以及良好生物相容性等。同时归纳了几种表面改性工艺所存在的问题,包括较差的长期耐蚀性、低应力承受能力以及技术安全性等。在此基础上,重点综述了近年来镁合金表面改性涂层的最新研究动态,其中简要介绍了化学转化、微弧氧化、等离子喷涂等几种常见的表面改性涂层形成机制。系统阐述了涂层对镁合金降解过程和生物相容性的影响规律,以及部分元素或粒子对涂层微观结构以及生物性能的作用机理。最后展望了医用镁合金表面改性涂层的发展方向。  相似文献   

7.
镁合金表面处理技术的研究进展   总被引:5,自引:0,他引:5  
介绍了国内外镁合金表面处理的最新研究进展,其中包括化学转化、自组装单分子膜、阳极氧化、电镀与化学镀、液相沉积与溶胶凝胶涂层、气相沉积、喷涂、激光熔覆合金技术等,并对镁合金表面处理的发展趋势作了展望.  相似文献   

8.
近年来,3C产业迅猛发展,节能环保成为全球关注的焦点,而减轻材料的重量和材料的循环利用是实现环保的重要手段.镁合金是最轻的工程金属材料之一,它具有良好的比强度、比刚度、可再循环和良好的铸造性能等特点,具有替代传统材料的广阔前景,被誉为21世纪绿色金属结构材料.但镁合金的耐蚀性差,严重阻碍了它的工业应用.因此,镁合金的表面防护处理极为重要.现在镁合金的表面处理工艺多种多样,良莠不齐.为了探索镁工业表面处理的最佳工艺,按照表面改性和表面涂层两大类系统地阐述了当今国内外镁合金表面处理的各种方法及其优缺点.最后,在综合前述处理工艺的基础上,提出了今后镁合金表面处理工艺的发展趋势.  相似文献   

9.
姜丹  黄国胜  马力  段体岗 《表面技术》2022,51(6):180-193
首先分别概述了仿生非浸润表面(超疏水表面、超滑表面)和智能自修复涂层(缺陷愈合型自修复涂层、腐蚀抑制型自修复涂层)的仿生设计原理和制备技术,重点阐述和探讨了其在金属腐蚀防护领域的研究进展与存在的问题。然后进一步梳理了近年来通过将仿生非浸润技术与智能自修复技术相结合,构建自愈性超疏水表面、超疏水活性涂层和超滑活性涂层等多功能防腐蚀涂层的新策略。最后分别对非浸润表面和自修复涂层技术在金属腐蚀控制领域未来的研究重点和发展趋势进行了展望,希望为仿生表面/涂层的设计、制备及防腐蚀应用提供有益的参考。  相似文献   

10.
镁合金的腐蚀与表面氧化技术进展   总被引:1,自引:0,他引:1  
综述了镁及其合金的腐蚀原理和表面氧化技术的研究现状。通过比较各种氧化技术的优缺点,概述了镁合金腐蚀与防护研究目前存在的问题和发展前景。  相似文献   

11.
目的在镁合金表面制备具有自清洁、自修复功能的防护膜,实现镁合金的智能防护。方法采用提拉法在AZ61镁合金表面制备含有pH敏感型"核/壳"纳米结构缓蚀剂的无机-有机杂化硅膜,该膜层具有自清洁、自修复功能。利用扫描电子显微镜(SEM)表征膜层表面形貌,利用接触角测量仪(CA)表征膜层的润湿性和粘附性,利用粉笔灰模拟测试膜层的自清洁功能,利用电化学工作站测试膜层的防护性能,并结合分光光度计对缓蚀剂释放浓度的检测来评价膜层的自修复功能。结果制备的膜层中含有大量pH敏感型"核/壳"纳米结构缓蚀剂,且表面粗糙。水在膜层表面的静态接触角高达156.7°,而滚动角只有5°,表明膜层具有超疏水、低粘附特性,这样水滴滚落到膜层表面时,能够带走膜层表面的污染物,从而实现自清洁功能。开路电位及分光光度计测试表明,溶液pH的变化引起膜层中缓蚀剂释放,从而使膜层实现自修复。极化曲线测试结果表明,含有"核/壳"纳米结构缓蚀剂的膜层样品的腐蚀电流密度比镁合金基底样品小了接近2个数量级,其缓蚀效率可达99.36%。电化学阻抗谱(EIS)测试结果显示,含有"核/壳"纳米结构缓蚀剂的膜层阻值高达85105Ω·cm~2,且具有较持久的自修复防护能力。结论成功制备了含有pH敏感型"核/壳"纳米结构缓蚀剂的无机-有机杂化硅膜,该膜层具有自清洁、自修复功能以及优异的防护性能。  相似文献   

12.
镁及其合金表面化学转化处理技术   总被引:22,自引:2,他引:22  
镁合金作为结构材料具有优良的性能,其应用日益受到关注,但耐蚀性差却制约了其应用,寻找一种合适的表面处理方法已成为必然。综述了镁及镁合金的各种化学转化膜处理方法,包括铬酸盐转化膜、磷酸盐-高锰酸钾转化膜、锡酸盐转化膜、氟锆酸盐转化膜、稀土转化膜、钴酸盐转化膜以及钼酸盐、硅酸盐等转化处理方法。  相似文献   

13.
宋雨来  刘庆  王海洋 《表面技术》2020,49(5):112-119
随着挤压镁合金的广泛应用,如何改善其较差的耐蚀性自然成为无可回避的重要研究课题。通过综合分析国内外挤压镁合金腐蚀研究领域的相关研究成果,从腐蚀行为与防护技术两个方面进行了讨论。挤压镁合金易于受到多种腐蚀形式的破坏,其腐蚀行为、性能和机理受到材料特性和腐蚀环境等多种因素的影响,表现出多样性和复杂性,特别是应力和腐蚀协同所用下的挤压镁合金失效行为,尚需开展深入研究。通过优化制备工艺参数、合金化和热处理等技术进行组织和成分优化,基于应力条件、不同的腐蚀环境,开发新型耐腐蚀挤压镁合金,对于提高挤压镁合金抗腐蚀性能,扩大其应用领域具有实用价值。电化学镀、化学转化膜、自修复涂层等涂层技术在合金表面形成钝化膜、陶瓷膜以及释放缓蚀剂,对挤压镁合金提供了有效防护。其中,自修复涂层能够有效解决涂层破损产生的局部腐蚀问题,极大地改善了膜层的防护性能,拥有良好的应用前景,是涂层研发的新方向。  相似文献   

14.
程青鹏  黄秀玲  张凡 《表面技术》2023,52(4):112-123
总结了近年来经剧烈塑性变形加工后的超细晶镁合金的腐蚀与防护研究。镁合金的初始成分可能对剧烈塑性变形加工后样品耐蚀性的变化起主导性作用。对于纯镁及含有铝或稀土等致钝性元素的合金,如AZ系和WE系镁合金,绝大多数剧烈塑性变形加工会促进生成更致密的保护膜,因而可以提升镁合金的耐蚀性。对于不含此类元素的镁合金体系,如Mg-Zn系合金,由于生成了更多的腐蚀微电偶,等通道转角挤压或高压扭转加工引起的第二相颗粒的细化和分布会加速镁合金的腐蚀,但多轴等温锻造可以提升此类合金的耐蚀性,该技术值得更多的关注。在成分相似的情况下,组织的均匀性或者第二相变化情况的影响可能较晶粒尺寸和织构演变的影响更大。对加工后的镁合金进行热处理或者表面改性是进一步提升其耐蚀性的有效手段。相对于粗晶基体,超细晶基体表面改性后的涂层的耐蚀性往往更好,值得更多的研究关注。  相似文献   

15.
镁合金与超高强度镁合金   总被引:40,自引:2,他引:40  
简述镁和镁合金的特点 ,作为结构材料的优势与不足 ;阐明研究和开发超高强度镁合金的意义 ,综述发达国家超高强度镁合金的研究和应用现状 ,存在的问题和超高强度镁合金研究的方向 ;指出发展超高强度镁合金对发展我国航空航天事业的重要性  相似文献   

16.
刘志江  朱卫国 《表面技术》2018,47(7):209-213
目的更好地开展镁合金防腐蚀研究,提高其耐蚀性。方法利用电化学法制备镁合金磷化膜,通过单因素条件实验研究电流密度、温度以及时间对反应过程的影响,得出制备最佳方案。通过X荧光光谱仪(EDX)、X射线衍射仪(XRD)及电化学测试等现代检测技术对镁合金电化学膜微观结构、沉积速率等进行测试,得出制备的转化膜组成成分的定性及半定量分析结果,以此推断镁合金电化学转化膜的生成机理。结果电化学法制备镁合金磷化膜的最佳工艺条件为:电流密度0.5 A/dm2,温度30℃,反应时间5 min。EDX分析结果显示,磷化膜主要成分为Mg、P、Zn,其质量分数分别为11.017%、2.105%、28.534%。结论电化学转化膜的主要化学成分为Mg、P、Zn,还有少量其他成分,如Al、S、Ca、Mn、Ni、Cu。腐蚀机理复杂,不确定性较大。镁合金磷化膜主要由结晶型磷化锌、磷化铝、锌镁金属磷化夹杂物和单质Zn组成,并且还有少量的其他化合物。  相似文献   

17.
镁合金表面耐蚀改性技术   总被引:12,自引:0,他引:12  
镁及镁合金是一种极具发展潜力的轻质结构材料,但镁合金的耐蚀性较差,因此进行适当的表面处理以提高镁合金的耐蚀性能已成为目前研究的热点。微弧氧化、激光表面处理、离子注入、物理气相沉积(PVD)及等离子体注入沉积(IBAD)是近年来兴起的镁合金表面耐蚀强化新技术,这几种技术在处理镁合金耐蚀性方面已取得了一定的成果。综述了目前国内外应用这几种方法提高镁合金耐蚀性方面的研究现状,并展望了其应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号