共查询到18条相似文献,搜索用时 46 毫秒
1.
2.
目的 针对商标检索系统中利用单一特征进行识别和度量时,往往难以充分表征商标特征,易出现检索精度和鲁棒性不高等问题,文中拟设计一种泽尼克(Zernike)矩耦合颜色空间加权度量的商标检索方案。方法 首先,利用Zernike矩作为商标的形状描述符,充分描述商标的形状信息。随后,利用颜色空间来描述图像中像素空间信息的颜色分布特征。然后,分别将输入商标的Zernike矩特征、颜色空间特征与存储在数据库中的特征进行匹配,以计算Zernike矩特征的加权Euclidean距离与颜色空间度量。最后,联合颜色空间度量与Euclidean距离,综合考虑形状与颜色特征,形成新的距离测量规则,输出与查询商标相似的商标。结果 实验数据表明,与当前商标检索算法相比较,所提算法具有更高的检索准确率与鲁棒性,表现出更为理想的Precision-Recall以及平均准确率(Mean Average Precision, MAP)。结论 所提算法返回的图像与查询图像相似度较高,在商标注册、侵权保护等方面中具有一定的参考价值。 相似文献
3.
目的为了解决低层特征与中层语义属性间出现的语义鸿沟,以及在将低层特征转化为语义属性的过程中易丢失信息,从而会降低检索精度等问题,设计一种多层次视觉语义特征融合的图像检索算法。方法首先分别提取图像的3种中层特征(深度卷积神经网络(DCNN)特征、Fisher向量、稀疏编码空间金字塔匹配特征(SCSPM));其次,为了对3种特征进行有效融合,定义一种基于图的半监督学习模型,将提取的3个中层特征进行融合,形成一个多层次视觉语义特征,有效结合3种不同中层特征的互补信息,提高图像特征描述,从而降低检索算法中的语义鸿沟;最后,引入具有视觉特性与语义统一的距离函数,根据提取的多层次视觉语义特征来计算查询图像和训练图像的相似度量,完成图像检索任务。结果实验结果表明,与当前检索方法对比,文中算法具有更高的检索精度与效率。结论所提算法具有良好的检索准确度,在医疗、包装商标等领域具有一定的参考价值。 相似文献
4.
为充分利用本体概念之间隐含的语义关系,以支持产品功能创新设计过程,提出了一种基于网络表示学习的本体语义挖掘与功能语义检索方法。首先,基于本体中确定的语义关系,利用网络表示学习挖掘隐含的语义关系;然后,基于语义类比的向量运算,建立本体概念之间潜在的功能语义关系,并对功能语义向量进行表达;最后,通过功能语义向量的相似度计算实现由用户功能需求向跨领域功能性设计资料的扩展,并建立相应的设计资料检索方法和流程。产品设计示例表明,所提出的本体语义挖掘与功能语义检索方法有利于从产品功能角度获取跨领域设计知识,可为设计人员提供更多的灵感。 相似文献
5.
为了实现矿用巡检机器人对煤矿井下设备的识别与匹配,通过基于卷积神经网络的深度学习算法建立了煤矿设备类型识别模型,分别在明亮环境下、昏暗环境下以及设备重叠情况下采集大量待识别设备图像样本,再对识别模型进行训练,实现巡检机器人对煤矿设备的精确识别与分类。使用基于粒子群优化的SVM(support vector machine,支持向量机)建立了煤矿设备匹配模型,将巡检机器人相对于煤矿坐标系的三轴位置信息、三自由度角度和视觉相机转角作为匹配模型的输入量,将相机视野中设备序号作为输出量,实现煤矿设备类型识别模型识别出的设备与已知设备序号一一对应。实验结果表明基于深度学习算法的煤矿设备类型识别模型对外界的干扰不敏感,识别准确率高;基于SVM的煤矿设备匹配模型的匹配准确率达到了93.2%,在匹配准确率的训练和测试效率上均优于基于BP(back propagation,反向传播)神经网络的匹配模型。研究结果可为煤矿井下巡检机器人的研制提供参考。 相似文献
6.
针对机械大数据因故障类内离散度和类间相似度较大而导致诊断精度低的问题,提出一种深度度量学习故障诊断方法,采用深度神经网络(Deep Neural Network, DNN)对故障特征进行自适应提取,并利用基于欧氏距离的边际Fisher分析(Marginal Fisher Analysis, MFA)方法进行了优选,在构建的深度度量网络(Deep Metric Network, DMN)顶层特征输出层添加BPNN(Back Propagation Neural Network, BPNN)分类器对网络参数进行微调,并实现故障的分类识别。通过对不同类型和严重程度的轴承故障进行了诊断分析,验证了该方法可以有效地对轴承故障进行高精度诊断,效果优于传统深度信念网络(Deep Belief Network, DBN)故障诊断方法以及常用时域统计特征结合支持向量机(Support Vector Machine, SVM)分类的故障诊断方法。 相似文献
7.
目的针对商标检索算法中易出现的语义鸿沟,底层视觉特征与高层语义相关性不强而导致商标检索精度不理想的问题,定义一种基于区域生长耦合多分类器的商标检索方案。方法首先对输入的商标进行预处理,去除图像中的噪声和杂散点,并通过3D直方图和聚类算法来提取输入图像中的主颜色;基于区域生长算法,合并具有相同颜色标签的所有连接点,以形成颜色区域;然后根据生成的颜色区域,分别定义颜色分类器、形状分类器和关系分类器,利用每个分类器计算查询图像和数据库中图像的检索优势概率;最后通过决策组合,根据检索规则和列表长度找到最相似的商标,并利用动态选择方案进一步提高检索准确率。结果实验结果表明,与当前商标检索方案相比,所提检索系统具有更为理想的Precision-Recall曲线,对缩放、扭曲和噪声具有更高的鲁棒性。结论所提方案在各类几何变换下具备较高的检索准确率,对商标注册、版权保护等行业有较好的借鉴意义。 相似文献
8.
针对基于对象的图像检索问题,利用模糊支持向量机(FSVM)提出了一种新的多示例学习算法——FSVM-MIL算法.在标准的多示例学习问题中,一个包被标为正包,则它至少包含一个示例是正的,否则被标为负包.FSVM-MIL算法将图像当作包,分割后的区域当作包中的示例,若图像包含有感兴趣对象,则对应的包标为正,否则标为负,因为正包中的示例不全是正的,概念标号存在模糊性,本文利用多样性密度方法寻找概念点,根据noisy-or概率模型定义了模糊隶属度函数,为正包中的示例赋予不同的模糊因子,用FSVM求解多示例学习问题.在SIVAL图像集进行对比实验,结果表明FSVM-MIL算法是有效的且性能不亚于其它同类方法. 相似文献
9.
基于多超平面支持向量机的图像语义分类算法 总被引:1,自引:0,他引:1
由于图像的低层可视特征与高层语义内容之间存在巨大的语义鸿沟,而基于内容的图像分类和检索准确性极大依赖低层可视特征的描述,本文提出了一种基于多超平面支持向量机的图像语义分类方法.多超平面分类器从优化问题的复杂度和运行泛化能力两方面进行研究,是最优分离超平面分类器一种显而易见的扩展.实验结果表明,本文提出的方法在图像语义分类的准确性方面要优于诸如采用色彩特征和纹理特征的支持向量机分类器的其它方法. 相似文献
10.
基于声信号的故障诊断由于其所具有的非接触、易安装等优点开始逐渐在机械故障诊断领域中得到广泛应用,但声信号的信噪比低导致其诊断准确率较差,因此急需有效的智能方法以实现噪声背景下的信号特征提取。稀疏滤波算法是一种基于无监督学习的智能特征提取算法,它能够优化特征分布的稀疏性从而得到好的特征表达。为了实现轴承声信号的特征提取和故障诊断,采用稀疏滤波算法从声信号频谱中提取特征,通过对其目标函数添加L2 范数约束以减少过拟合现象,然后采用Softmax 回归函数作为分类器,实现对不同轴承故障类型的精准识别。最后通过一组特殊设计的轴承故障诊断实验验证了所提方法的有效性。 相似文献
11.
光滑逼近超完备稀疏表示的图像超分辨率重构 总被引:1,自引:0,他引:1
为改善单帧降质图像的分辨率水平,提出了一种新的基于稀疏表示的学习法超分辨率图像重构方法。针对信号在既定的欠定超完备字典下的非稀疏性问题,采用光滑的递减函数逼近L0范数以避免对稀疏度先验的依赖,从而实现待重构图像块的有效稀疏表示,同时通过梯度下降的迭代优化获得稳定的收敛解。与双立方插值相比,图像的三倍超分辨实验显示,图像峰值信噪比(PSNR)提高2dB,框架相似性(SSIM)改善0.04,重构图像剔除了更多的模糊退化及边缘伪迹。该方法适于单帧降质图像的超分辨率增强。 相似文献
12.
提出了一种基于压缩感知原理的分类方法.把癌症基因表达数据分类问题归结为求解测试样本对于训练样本的稀疏表示问题,通过求解L1范数意义下的最优化问题来实现.提出的方法与Bagging神经网络和SVM的识别效果做了对比和分析,实验证明基于压缩感知的分类取得了相对较好的效果. 相似文献
13.
卫星云图能从多角度展示各类云系特征及其演变过程,实现基于内容的云图检索在天气实况监测、气候研究等方面具有重要意义。为了优化云图的组合特征,增强其组合特征的泛化能力,本文提出一种结合稀疏表示和子空间投影的特征优化方法。首先分别提取云图的颜色、纹理以及形状三种特征,并对其组合特征进行转换分块;然后对每一块的特征进行稀疏表示,根据不同原子的方差来分组特征,得到显著特征和非显著特征;最后由分组特征的能量来计算得到子空间投影矩阵,将初始的组合特征在投影矩阵上进行投影,得到优化后的云图特征。实验结果表明,本文优化云图特征的方法在查准率、查全率上均优于常用的降维方法和云图检索技术,对组合特征具有较强的优化能力,在实时检索过程中时间复杂度低,是一种全新的检索方法。 相似文献
14.
Sentence semantic matching (SSM) is a fundamental research in solving natural language processing tasks such as question answering and machine translation. The latest SSM research benefits from deep learning techniques by incorporating attention mechanism to semantically match given sentences. However, how to fully capture the semantic context without losing significant features for sentence encoding is still a challenge. To address this challenge, we propose a deep feature fusion model and integrate it into the most popular deep learning architecture for sentence matching task. The integrated architecture mainly consists of embedding layer, deep feature fusion layer, matching layer and prediction layer. In addition, we also compare the commonly used loss function, and propose a novel hybrid loss function integrating MSE and cross entropy together, considering confidence interval and threshold setting to preserve the indistinguishable instances in training process. To evaluate our model performance, we experiment on two real world public data sets: LCQMC and Quora. The experiment results demonstrate that our model outperforms the most existing advanced deep learning models for sentence matching, benefited from our enhanced loss function and deep feature fusion model for capturing semantic context. 相似文献
15.
针对真实测量噪声影响下复杂动载荷识别精度低的问题,提出了一种基于冗余扩展余弦字典的L1范数正则化载荷识别方法.根据系统响应与外部动载荷的卷积关系,建立用于载荷识别的离散系统控制方程;选择与动载荷相适应的离散余弦基函数进行时延扩展,构造了扩展余弦字典与Db10小波字典相级联的冗余扩展字典,对复杂载荷进行稀疏表示;使用L1范数正则化方法求解稀疏表示系数,基于改进L曲线准则获取最优正则化参数,通过在GARTEUR飞机模型上试验得到的响应数据,实现不同噪声水平下对拍频载荷与连续冲击载荷时间历程的识别.试验研究结果表明:本文提出的冗余扩展余弦字典对拍频载荷与连续冲击载荷的表示稀疏性高,基于冗余扩展余弦字典的L1范数正则化载荷识别方法的识别精度高、抗噪性能好. 相似文献
16.
针对现有基于Transformer的语义分割网络存在的多尺度语义信息利用不充分、处理图像时生成冗长序列导致的高计算成本等问题,本文提出了一种基于多尺度特征增强的高效语义分割主干网络MFE-Former。该网络主要包括多尺度池化自注意力模块(multi-scale pooling self-attention, MPSA)和跨空间前馈网络模块(cross-spatial feed-forward network, CS-FFN)。其中,MPSA利用多尺度池化操作对特征图序列进行降采样,在减少计算成本的同时还高效地从特征图序列中提取多尺度的上下文信息,增强Transformer对多尺度信息的建模能力;CS-FFN通过采用简化的深度卷积层替代传统的全连接层,减少前馈网络初始线性变换层的参数量,并在前馈网络中引入跨空间注意力(cross-spatial attention, CSA),使模型更有效地捕捉不同空间的交互信息,进一步增强模型的表达能力。MFE-Former在数据集ADE20K、Cityscapes和COCO-Stuff上的平均交并比分别达到44.1%、80.6%和38.0%,与主流分割算法相比,MFE-Former能够以更低的计算成本获得具有竞争力的分割精度,有效改善了现有方法多尺度信息利用不足和计算成本高的问题。
相似文献17.
The exponential increase in data over the past few years, particularly in images, has led to more complex content since visual representation became the new norm. E-commerce and similar platforms maintain large image catalogues of their products. In image databases, searching and retrieving similar images is still a challenge, even though several image retrieval techniques have been proposed over the decade. Most of these techniques work well when querying general image databases. However, they often fail in domain-specific image databases, especially for datasets with low intraclass variance. This paper proposes a domain-specific image similarity search engine based on a fused deep learning network. The network is comprised of an improved object localization module, a classification module to narrow down search options and finally a feature extraction and similarity calculation module. The network features both an offline stage for indexing the dataset and an online stage for querying. The dataset used to evaluate the performance of the proposed network is a custom domain-specific dataset related to cosmetics packaging gathered from various online platforms. The proposed method addresses the intraclass variance problem with more precise object localization and the introduction of top result reranking based on object contours. Finally, quantitative and qualitative experiment results are presented, showing improved image similarity search performance. 相似文献
18.
XIE Ning;CHEN Liang;PEI Ziqing;HE Zhicheng;CHEN Tao 《测试技术学报》2024,38(1):12-18
Aiming at the harsh environment and serious light pollution in the production workshop of automobile body-in-white, it is difficult to accurately locate and inefficient when the vision system and other equipment are combined to detect the quality of the solder joints. An improved U-Net image segmentation algorithm was proposed. By improving the convolution structure to better fuse the semantic information of the feature map and lighten the network structure. Improve the loss function and integrate the attention mechanism to better mine the foreground in the case of uneven positive and negative samples, obtain spatial features of different scale feature maps and establish long-term channel relationships. Compared with the original U-Net network, the Dice coefficient of the proposed RPSA-U-Net network is increased by 8.76% to 0.983 6, the MIOU is increased by 11.5% to 0.967 81, and the network parameters are also reduced by 7%. Combined with the image processing method to find the center of the solder joint, the efficiency is higher and the precision is higher, and it has application value. 相似文献