首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
总结了高心墙堆石坝动力分析方法与最新研究进展,给出了不同动力计算方法的优缺点及动力分析研究发展方向。研究表明,300 m级超高心墙堆石坝动力响应特性研究应包括坝体加速度反应、残余变形、心墙动强度及坝坡稳定等内容。结合文献研究成果分析,指出超高心墙堆石坝地震破坏模式为:首先坝坡面出现局部松动滚石、坝体产生变形及裂缝;坝坡累积的滑动变形逐渐加大,坝坡开始坍塌;心墙及上游反滤料动强度不足范围从坝顶向下逐渐加深,以致坝坡的整体稳定性进一步被削弱或塌滑。综合残余变形、防渗心墙抗剪强度、坝坡稳定等方面的极限抗震能力评价标准,表明我国300 m级超高心墙堆石坝能承受地震动峰值加速度0.45g^0.60g的动荷载。  相似文献   

2.
基于三维非线性动力有限元分析方法,对平寨水库混凝土面板堆石坝进行地震反应特性研究。针对坝体动力加速度反应、地震残余变形、面板应力及周边缝变形以及坝坡的抗震稳定性对建于峡谷区200 m级高混凝土面板堆石坝进行综合评价,揭示峡谷地形高混凝土面板堆石坝地震反应的一般规律,研究高面板坝的抗震稳定性,并建议相应的抗震设计工程措施。  相似文献   

3.
恰甫其海水库大坝安全监测系统   总被引:1,自引:0,他引:1  
1大坝安全监测项目及布置恰甫其海水利枢纽工程拦河坝为粘土心墙堆石坝,属1级建筑物,最大坝高108m,坝顶长度362m,坝顶宽12.0m,上游坝坡1∶2.5,下游综合坝坡1∶2.33,顶宽6.0m,心墙上、下游边坡1∶0.3,其大坝安全监测主要布置了坝体变形、心墙土压力、渗流、渗流量等监测项目。其中:坝体表面变形监测包括竖向位移和水平位移,在上游坝坡、坝顶及下游坝坡设置监测表面变形监测点;坝体内部变形监测为心墙内部的沉降和水平位移(测斜);坝体土压力监测主要监测粘土心墙是否会产生拱效应;坝体渗流及绕坝渗流监测是重点监测项目,在坝体上选取3个剖面,…  相似文献   

4.
 目前国内即将列项修建的 300 m 级高土质心墙坝,在高应力状态下,坝料的长期变形特性对坝体的沉降影响大。为研究 300 m 级超高土质心墙坝的长期变形特性,采用长江科学院九参数幂级数流变本构模型及其试验参数,对 300 m 级高土质心墙坝填筑过程及流变过程进行数值模拟。计算得到的流变位移约为 47 cm 左右,考虑了流变后的变形会更真实反映实际坝体的运行状况。  相似文献   

5.
针对某粉煤灰混凝土心墙坝体动力响应特征,利用Abaqus有限元软件开展不同心墙设计参数对坝体动力特征影响分析。获得了坝高设计参数对心墙坝动力特征影响,坝高影响X正向最大位移出现时间节点,Y、Z向动位移与坝高为正相关特征,Z负向位移在地震荷载残余期变化显著,且Z向加速度值均低于X、Y向。分析了坝体总加速度、总动位移包络线分布特征,坝高与总加速度包络线极大值为正相关,沿坝顶至坝底,动位移值逐渐降低,坝底部在各坝高下均会出现显著变形。研究了心墙曲率对坝体动力特性影响规律,各曲率下加速度包络线极小值均为1.532~1.589m/s2,有曲率心墙抗震性能高于直立坝。对比了各曲率下坝体在各方向上的加速度、动位移特征,考虑坝体抗震设计,心墙最佳曲率应在9.6×10-5~1.1×10-4 m-1范围。  相似文献   

6.
双江口水电站是大渡河干流上游控制性水库,坝址位于两岸较陡的"V"形河谷中,大坝采用碎石土心墙堆石坝,最大坝高314 m,是世界在建的第一高坝。目前可供借鉴的300 m级心墙堆石坝筑坝经验极少,迫切需要在可研阶段对深厚覆盖层上300 m级心墙堆石坝筑坝关键技术开展全面、系统的研究。基于现有的水电工程大坝设计和科研技术,通过对筑坝材料特性、坝体及坝基变形与稳定分析理论和方法、坝体结构型式及分区设计、坝体动力反应分析及抗震措施、渗流分析及渗控措施5项专题、23个子题进行深入研究,取得一系列筑坝技术研究成果。此项研究为双江口水电站工程建设奠定了技术基础,并将进一步推动世界超高土石坝筑坝技术的发展。  相似文献   

7.
采用三维非线性动力有限元分析方法,针对处于岷江断裂带和龙门山断裂带的剑科水电站工程的心墙堆石坝,进行了坝体在人工地震波作用下的地震反应计算分析,研究了该坝的地震位移、加速度反应、动剪应力、残余变形以及液化反应.计算结果表明,坝体最大加速度放大倍数为3.23,放大效应明显;廊道顶部最大动剪应力为150 kPa,动强度满足要求;最大永久沉降量约为坝高的0.139%,分布符合一般规律:动孔压比较小,不会发生液化破坏.坝体各项抗震指标均在合理范围内,大坝抗震稳定性良好.  相似文献   

8.
为了优化设计和安全评价,对某300 m级超高直心墙堆石坝和作为比较方案的斜心墙堆石坝进行了三维有限元应力变形计算。对坝体堆石料采用邓肯张E-B非线性弹性模型,对高塑性黏土与混凝土结构接触面采用Goodman单元模型,分43级荷载对坝体的施工和蓄水过程进行模拟,比较分析两种坝型在蓄水期坝体和心墙的应力和变形性状。结果表明,相对直心墙方案,斜心墙方案计算所得坝体的最大水平位移相对较小,垂直沉降较大。斜心墙方案下心墙两岸坝肩处高应力水平区域有所减小,可以适当改善心墙上游面单元的应力和变形条件。斜心墙方案下心墙的拱效应相对较弱,其抗水力劈裂的性能稍好。  相似文献   

9.
超高混凝土面板堆石坝建设中的关键技术问题   总被引:4,自引:0,他引:4  
300 m级超高混凝土面板堆石坝的设计与施工将面临一系列技术挑战。对于超高混凝土面板坝,其坝坡稳定和堆石材料渗透稳定不是主要制约因素,而坝体堆石的变形控制,以及混凝土面板应力状态的改善将是关键技术问题。为此,必须从坝体材料分区的改进、筑坝材料选择、堆石压实标准控制,以及面板浇筑时机选择、面板厚度设计、面板钢筋排列、面板接缝系统设计等方面,采取相应的工程措施,以尽可能地减少堆石体的变形(特别是后期变形),降低运行期混凝土面板的拉、压应力。通过采取这些工程措施,建设300 m级超高混凝土面板堆石坝在技术上是可行的。  相似文献   

10.
埃塞俄比亚KESEM土石坝动力分析   总被引:1,自引:0,他引:1  
采用有效应力非线性有限元法对埃塞俄比亚Kesem粘土心墙土石坝进行了地震反应分析。得到该坝在地震作用下坝体的加速度反应和应力反应,根据坝坡残余变形及坝坡的动力稳定性等进行了抗震评价。  相似文献   

11.
将坝料的动力试验结果按照反映试验过程中材料振动硬化特性的幂函数型动应力-应变关系模型和阻尼比计算公式进行整理,拟合得到了堆石料、反滤料、心墙料的最大动剪模量与平均有效主应力关系、动剪模量比与动剪应变关系、阻尼比与动剪应变关系的均值曲线及上下包络曲线。以一座300 m级超高心墙堆石坝为算例,取不同关系曲线所对应的参数进行动力敏感性分析。由结果可知,增大k_1、n_(GM)、k_3值,减小k_2、n值均会使得坝体动力反应、永久变形及动孔压极值增大,反之则减小。  相似文献   

12.
贺蕾铭  杜丽惠  高鑫  黄镒峰 《水力发电》2012,38(2):22-24,39
为了研究面板堆石坝在地震作用下的动力、变形特性及安全性,以潘口面板堆石坝工程为研究对象,用有限元法对其进行地震反应分析,重点研究加速度反应特性、震后残余变形及面板变形、坝体单元抗震安全性及下游坝坡的抗震安全性.分析结果表明,大坝整体抗震性能较好,满足给定地震下的抗震稳定性要求;坝顶及坝顶附近下游坡部分区域的加速度反应较大,并发生相对较大的永久变形,为该面板堆石坝工程抗震中的薄弱部位.  相似文献   

13.
双江口水电站土石心墙堆石坝最大坝高达314m,心墙防渗料对300m级超高心墙坝的适宜性是需要深入研究的关键技术问题。研究表明,需要对偏细的当卡土料掺入花岗岩破碎料作为心墙防渗料,以满足力学强度和防渗性能等的综合要求。经过室内物理力学性试验比选、现场掺合碾压试验复核以及坝体数值分析,当卡土料与花岗岩破碎料按照50%:50%的质量比例进行掺合,能够得出满足设计要求的心墙防渗料。  相似文献   

14.
密松水电站面板堆石坝属于超宽河谷的面板堆石坝,其抗震分析还缺少相应的工程经验。针对面板堆石坝在强震中易产生坝体永久变形过大及面板易破损等问题,采用拟静力法和有限元时程动力法,分析了堆石坝的加速度和应力反应、面板应力、接缝变形、坝体地震残余变形以及坝坡的动力稳定性,对大坝的抗震安全性进行了综合评价。结果表明,在设计与校核地震作用下,坝坡稳定性满足规范要求,坝体永久变形与同类工程相当,面板应力状态满足抗震安全要求,面板接缝变形在止水结构允许范围之内。  相似文献   

15.
猴子岩大坝为目前国内的第二高面板堆石坝,坝高超过200 m。其具有"窄河谷、谷坡陡峻、地震强度高、超高坝"等特点,坝坡稳定及坝体变形控制是大坝的设计重点和难点,坝坡及坝体分区的合理设置对控制坝坡稳定和坝体变形至关重要。  相似文献   

16.
塔城砾石土心墙堆石坝最大坝高 315 m ,地震动作用下,坝身特别是坝体上部容易出现严重裂缝或者坝坡失稳等问题。为了考察高土石坝经历高震级地震时的抗震性能,坝体及覆盖层材料采用 Hardin 非线性动力模型,在三维非线性静力分析基础上,用时程法对大坝进行地震动力分析,以揭示在 Taft 三向地震波的作用过程中坝体中加速度、动位移、动应力的分布及其地震永久变形和液化情况。坝体非线性仿真结果表明,在设防烈度地震作用下,在坝体最大断面上,坝顶动力放大系数为 2.5 左右, 1/2 坝高小范围内有拉应力出现,坝体沉陷及向下游水平位移较大,坝踵坝趾局部有一定的液化可能。  相似文献   

17.
其宗水电站大坝为300m级超高心墙堆石坝,防渗心墙采用掺砾土料,推荐心墙基础置于基岩,通过总结已有工程经验,对其宗心墙坝的设计进行了分析研究。根据大坝技术发展水平与工程实践,在深厚覆盖层上建设300m级心墙堆石坝是可行的。  相似文献   

18.
高土石坝地震动力反应特性大型振动台模型试验研究   总被引:2,自引:0,他引:2  
心墙堆石坝和面板堆石坝是目前高地震烈度区高坝建设中普遍采用的两种高土石坝坝型,它们的动力反应特性和抗震性能是水电工程界普遍关注的问题。本文基于双江口高心墙堆石坝、两河口高心墙堆石坝和猴子岩高面板堆石坝等3个实际工程的大坝大型地震模拟振动台模型试验,对比、分析试验结果,研究高土石坝地震动力反应特性,重点考察了两种坝型(心墙坝和面板坝)地震动力反应特性的异同点。研究表明:高面板堆石坝和高心墙堆石坝均有良好的抗震性能;水库蓄水对两种坝型结构动力特性参数变化的影响规律有所差异;面板对堆石坝上游坝坡的保护作用明显,有效抑制了上坝坡的加速度反应;面板堆石坝虽然抗震性能优良,但对面板相关的设计和施工水平依赖性很强。  相似文献   

19.
吴俊杰 《水利水电技术》2019,50(12):130-137
鉴于强震区200 m级超高混凝土面板堆石坝所面临的变形控制难、坝体抗震等级高、砂砾石覆盖层深厚等诸多设计难点,结合阿尔塔什混凝土面板堆石坝坝体结构、坝壳料设计,借鉴已建工程经验提出抗震工程措施。通过建立坝体、覆盖层的三维有限元模型,堆石料静力本构分析采用邓肯张E-B模型,动力本构分析采用等效黏弹性模型,分析了考虑抗震工程措施的坝体抗震能力。结果表明:坝体在竣工期、正常运行期、正常运行+地震三个工况下的变形规律合理。混凝土防渗墙和面板结构中最大拉、压应力均可满足所选混凝土材料的规范要求。坝顶下游坝坡设置浆砌块石护坡后可有效减弱该区域局部动力剪切破坏和浅层滑移。坝顶上、下游边坡布置阻滑钢筋网以及适当提高填筑料的相对紧密度、孔隙率,可以有效提高大坝坝坡的抗震稳定性和坝体抗震能力。研究成果以期为今后300 m级面板堆石坝工程设计上提供借鉴。  相似文献   

20.
其宗水电站大坝为300m级超高心墙堆石坝,防渗心墙采用掺砾土料,推荐心墙基础置于基岩,通过总结已有工程经验,对其宗心墙坝的设计进行了分析研究。根据大坝技术发展水平与工程实践,在深厚覆盖层上建设300m级心墙堆石坝是可行的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号