首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
王春阳  刘鑫  史红伟  杨波 《半导体光电》2018,39(4):473-476,489
单光子雪崩光电二极管(SPAD)是目前激光测距领域常见的单光子探测器。针对SPAD在单光子探测应用中的高速淬灭问题,设计了一种可以快速淬灭雪崩电流、缩短偏置电压恢复时间的主被动混合淬灭电路。根据实际使用的SPAD器件相关性能参数,建立了SPAD的SPICE模型;使用被动淬灭电路对该模型进行验证,证实了该模型的准确性和实用性;结合SPICE模型,通过计算机仿真技术对主被动混合淬灭电路进行了参数调整和功能验证。结果表明,所设计电路的淬灭时间和恢复时间分别达到200和400ps,满足单光子激光测距的应用需求。该混合淬灭电路结构简单,可以用于全集成单光子阵列探测器的相关研究。  相似文献   

2.
为了实现大阵列电路集成,文中设计和实现了一种能与主动淬火电路集成的宽光谱范围和快速的单光子雪崩二极管(SPAD)芯片.一个精确的单光子雪崩二极管电路模型模拟了其在盖革模式下的静态和动态行为.该有源区直径为8 μm的单光子雪崩二极管器件是基于上海宏利GSMC 180 nm CMOS图像传感器(CIS)技术实现的.由于采用有效的器件结构,其击穿电压是15.2 V,淬灭时间是7.9 ns.此外,该器件实现了宽的光谱灵敏度,其在低过电压下的光子探测概率(PDP)从470 nm到680 nm光波长段最高可达15.7%.并且它在室温下的暗计数率相当低.  相似文献   

3.
为了实现大阵列电路集成,文中设计和实现了一种能与主动淬火电路集成的宽光谱范围和快速的单光子雪崩二极管(SPAD)芯片.一个精确的单光子雪崩二极管电路模型模拟了其在盖革模式下的静态和动态行为.该有源区直径为8μm的单光子雪崩二极管器件是基于上海宏利GSMC 180 nm CMOS图像传感器(CIS)技术实现的.由于采用有效的器件结构,其击穿电压是15.2 V,淬灭时间是7.9 ns.此外,该器件实现了宽的光谱灵敏度,其在低过电压下的光子探测概率(PDP)从470 nm到680 nm光波长段最高可达15.7%.并且它在室温下的暗计数率相当低.  相似文献   

4.
针对应用于单光子探测的单光子雪崩二极管建立了EDA电路模型,讨论了模型参数设置及仿真方法,利用此模型分别完成了像素级被动淬火集成电路、像素级主动淬火及快速恢复集成电路的设计仿真,并利用CSMC公司的0.5μm CMOS工艺进行流片制作.结果表明,建立的探测器模型与CMOS电路设计相互兼容,通过合适的电路设计和参数设置,采用以上集成淬灭电路的单光子探测器的最小"盲时"可分别达到100 ns和4 ns.  相似文献   

5.
单光子雪崩二极管的被动-主动混合抑制技术   总被引:2,自引:0,他引:2  
采用主动快恢复技术,设计了缩短死时间的被动-主动相结合的抑制电路,制作出高量子效率、低噪声、死时间短的单光子探测器,探测器的死时间由原来的大于2μs缩短为小于100ns,计数率达到5 MHz以上.利用TAC/MCA技术对单光子雪崩二极管(SPAD)输出信号进行了光子自相关测量,研究了2个相邻单光子计数脉冲时间分布统计效应,直接观测到了采用被动-主动混合抑制技术后死时间的改善.  相似文献   

6.
单光子雪崩二极管(SPAD)作为一种高效的光子探测器件被广泛应用于量子通信和三维成像等领域。在Cadence中建立了一个SPAD的Spice模型,通过Verilog-A语言,采用两个e指数函数的组合,以连续函数的方式描述了SPAD在盖革模式区等效电阻的动态变化。这两个e指数函数分别体现了高阻区和低阻区的等效电阻特性,解决了分段电阻模型仿真不收敛的问题。该Spice模型模拟了SPAD器件在“接收光子-雪崩产生脉冲-淬灭-复位”工作过程中的动态特性和SPAD从正偏到二次击穿的静态I-V特性。将其应用到4种不同淬灭电路的仿真中,验证了该模型的有效性和稳定性。  相似文献   

7.
针对标准CMOS工艺的单光子雪崩探测器(Single Photon Avalanche Detector,SPAD),设计了 一种可用于自由运转模式的高速淬灭电路.为了实现淬灭电路的功能设计与精准仿真,根据实测的SPAD电流-电压曲线拟合得到了电流与电压间的多段式函数解析式,进一步建立了 SPAD器件的Verilog-A行为级模型并与淬灭电路进行集成仿真与验证.淬灭电路采用基于电容感应的主被动淬灭结构,利用可变MOS电容的延迟电路实现了关断时间(Hold-off Time)的灵活调节.仿真结果表明,所设计淬灭电路的淬灭时间和恢复时间分别为1.0和1.2 ns,关断时间调节范围为1.02~3.55 μs,可以满足自由运转CMOS SPAD的应用需求.  相似文献   

8.
分析了单光子雪崩光电二极管(SPAD)探测器雪崩电压的温度特性,得出SPAD的雪崩电压随温度变化约为0.7 V/℃,需要设计恒温控制电路保证SPAD的正常工作.从最优温度控制策略的角度,选用MAX1978温度控制芯片进行电路设计实现SPAD的温度恒定.简要介绍了恒温控制系统的工作原理及各个组成部分.通过恒温控制电路实验验证了电路的可行性,恒温控制电路可以在1 min内使SPAD的工作环境温度恒定在0.06℃内,温度控制速度和精度均能满足SPAD温度恒定的要求,确保单光子探测器SPAD正常工作,使单光子探测器SPAD具有更好的探测性能.  相似文献   

9.
设计了一种基于SMIC 0.13μm CIS工艺的单光子飞行时间(TOF)传感器像素结构。针对传统单光子雪崩二极管(SPAD)结构的不足,采用p阱和STI共同作为保护环,避免器件提前发生边缘击穿从而减小器件面积,增加深n阱使有源区耗尽层变窄,从而降低雪崩击穿电压,增加硅外延层将器件的光谱响应峰值转移到所需要的光波长,以此提高器件对指定波长光的吸收能力。通过浮动SPAD阳极电压的方式,采用低压CMOS晶体管实现主动式淬灭电路从而快速地控制雪崩电流淬灭,以达到缩短死区时间的目的。通过SILVACO TCAD和Cadence IC设计套件对工艺、像素器件结构以及相关电路进行仿真,验证了该设计的可行性。  相似文献   

10.
简述单光子探测器对于激光云高仪研究的重要作用。在了解单光子探测器SPAD基本工作原理的基础上,搭建SPAD的被动抑制电路,实验得出SPAD的死时间在2 ?s以上,只能适用于单光子计数率小于500 kHz的场合。为了减少单光子探测器的死时间,提高单光子计数率,设计了雪崩被动淬灭电压主动恢复的混合抑制电路,通过精密的时序控制,探测器的死时间缩短为100 ns,单光子计数率上升至10 MHz。理论上激光云高仪的空间分辨率可达15 m,单光子探测器SPAD混合抑制电路对于激光云高仪的工作性能以及顺利研制有着重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号