首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过溶液浸渍法制备剑麻纤维预浸渍料,然后通过热压成型的方法制备了纤维含量(质量分数)分别为10%、20%、30%和40%的取向长剑麻纤维增强聚乳酸层压复合材料,同时制备了随机取向的短剑麻纤维增强聚乳酸复合材料。研究了不同的纤维含量对取向长剑麻纤维增强聚乳酸层压复合材料力学性能的影响。结果表明,当纤维含量为40%时,复合材料的力学性能最好。其拉伸强度、弯曲强度以及冲击强度比纯聚乳酸分别提高了1.90、1.29以及15.69倍,比短纤维剑麻纤维增强聚乳酸分别提高了4.47、2.27以及10.73倍,达到了164.76、202.88 MPa以及36.72 k J/m~2。  相似文献   

2.
混杂纤维增强复合材料由于可以综合利用各种纤维的优点,极大地提高复合材料的性能,拓展复合材料的适用范围。采用剑麻纤维和玄武岩纤维混杂增强聚乳酸制备复合材料,研究了纤维含量和铺层顺序对混杂纤维复合材料力学性能的影响。结果表明,剑麻纤维作为芯层、玄武岩纤维作为表层时混杂复合材料具有较好力学性能。当纤维质量分数为40%时,其拉伸强度和冲击强度比纯聚乳酸分别提高了2.83倍、41.47倍,达到了267.29 MPa和183.46k J/m~2;纤维含量为30%时,其弯曲强度比纯聚乳酸提高4.07倍,达到354.16 MPa。  相似文献   

3.
通过反应加工的方法,在制备剑麻纤维增强聚乳酸复合材料的过程中引入硫代磷酸三苯基异氰酸酯(TPTI)进行反应,实现纤维和聚乳酸之间的链接,以达到增强复合材料界面性能进而提升复合材料力学性能的目的。利用该方法制备了纤维质量分数为20%,不同含量TPTI的剑麻纤维增强聚乳酸复合材料,通过红外光谱、差示扫描量热仪(DSC)、扫描电镜(SEM)和力学测试研究TPTI的引入对复合材料微观结构和力学性能的影响。研究发现,当TPTI含量为0. 6%时复合材料的界面性能最好,此时力学性能也最佳,拉伸强度达到60. 38 MPa,弯曲强度达到89. 23 MPa,缺口冲击强度达到4. 32 k J/m~2,相比PLA/SF分别提高了31%、18. 4%和14. 7%。  相似文献   

4.
《塑料》2016,(6)
以剑麻纤维(SF)和聚乳酸(PLA)为原料,通过注塑成型工艺制备了剑麻纤维增强聚乳酸可降解复合材料。研究了连续碱处理剑麻纤维(CASF)和未改性处理剑麻纤维(USF)在不同含量时对复合材料力学性能、吸水性及可降解性能的影响。结果表明:剑麻纤维的质量分数会显著影响复合材料的力学性能、吸水性和降解性能。相较于未改性处理剑麻纤维(USF),碱处理剑麻纤维(CASF)可以进一步提高复合材料的力学性能,降低复合材料的吸水率,延缓剑麻纤维增强可降解树脂基复合材料的降解速率,且酶降解法相较于土埋法降解能够显著加快复合材料的降解速率。当剑麻纤维含量为20%时,CASF/PLA复合材料的拉伸强度、弯曲强度和弯曲模量相较于纯PLA和USF/PLA分别提高了32.71%、10.08%;19.63%、12.11%;97.33%、12.40%;其冲击强度相较于纯PLA提高了71.19%。  相似文献   

5.
采用改性酚醛树脂为基体,剑麻/钢纤维混杂为增强纤维,通过辊炼、模压成型工艺制备了剑麻/钢纤维增强酚醛树脂复合材料.研究了剑麻纤维的加入及含量对聚砜改性酚醛树脂复合材料力学性能、摩擦磨损性能及热稳定性能的影响.结果表明:剑麻纤维质量分数为15%、钢纤维为10%时,复合材料的冲击和弯曲强度分别为3.82 kJ/m2和59.6 Mpa,达到最大;随着剑麻纤维含量的增加,复合材料的摩擦系数降低,热稳定性能下降,当剑麻纤维质量分数为10%时,复合材料的摩擦性能优异;复合材料的磨损面呈现黏着磨损和疲劳磨损特征.  相似文献   

6.
PBS/剑麻复合材料制备与性能研究   总被引:1,自引:0,他引:1  
利用蒸汽爆破预处理剑麻纤维(SESF)作为增强体,通过模压成型制备聚丁二酸丁二醇酯(PBS)/SESF复合材料,研究了SESF质量分数对复合材料力学性能的影响。对比了在剑麻纤维质量分数为30%的条件下,和未经预处理的2种剑麻纤维制得的复合材料的力学性能,并通过扫描电镜(SEM)对试样进行观察分析。结果表明,随着SESF质量分数的增加,复合材料的拉伸强度先增大后减小,在SESF质量分数为30%时达到最大值,比纯PBS的提高了15.5%;弯曲强度和弯曲模量均随剑麻纤维质量分数的增大而提高,其中弯曲强度在SESF质量分数为30%时的比纯PBS的提高了132.5%;断裂伸长率和冲击强度随着SESF质量分数的增加而降低。  相似文献   

7.
采用硅烷偶联剂KH-550和KH-570分别对纤维增强复合材料(FRP)废渣进行表面处理。制备了剑麻纤维/FRP废渣增强不饱和聚酯树脂复合材料。研究了FRP废渣的表面处理方式、FRP废渣含量和剑麻纤维含量对复合材料力学性能、吸水性和热性能等影响。结果表明,经过偶联剂处理的复合材料的力学性能和热稳定性均增强。当FRP废渣质量分数为30.0%,剑麻纤维质量分数为10.0%时,经KH-570处理复合材料的拉伸强度、弯曲强度和冲击强度分别提高22.8%,21.4%和19.2%。FRP废渣经过偶联剂处理后,复合材料的吸水性降低。  相似文献   

8.
提出了一种新的纤维表面处理方法———不完全化学处理法。以该方法制备的非连续碱处理剑麻纤维(DASF)作为增强纤维,通过开炼压制制备了DASF/聚乳酸(PLA)复合材料。对比了未处理剑麻纤维(SF)、连续碱处理剑麻纤维(CASF)以及DASF制得的PLA复合材料力学性能,并通过扫描电镜(SEM)、体视显微镜对试样进行观察分析。研究了DASF长度与直径的变化,以及非连续碱处理方法、DASF质量分数对复合材料结构和性能的影响。结果表明,DASF/PLA复合材料中,纤维的长度多分布在1.6~3.1 mm范围内,直径小于SF而大于CASF。相比于连续碱处理,非连续碱处理可以进一步提高复合材料力学性能。纤维质量分数会影响DASF/PLA复合材料的力学性能,当纤维质量分数为30%时,DASF/PLA复合材料的力学性能最优。  相似文献   

9.
通过紫外光在剑麻纤维表面接枝甲基丙烯酸甲酯(MMA),利用改性后的剑麻纤维与聚乳酸(PLA)熔融共混制备纤维增强复合材料。结果表明:改性后的剑麻在1 729.9cm-1处出现明显的羰基吸收峰。当MMA质量分数为60%,光照时间为4min时,其改性剑麻纤维制备的复合材料拉伸强度、弯曲强度和冲击强度达到最优,与未改性剑麻纤维复合材料相比分别提高了37.53%,34.82%,79.45%。改性后的剑麻纤维在PLA基体中分散较好,嵌入到PLA基体中,相界面模糊。  相似文献   

10.
通过红外光谱、扫描电子显微镜(SEM)等多种表征手段,研究了纤维含量、纤维不同表面处理方法对剑麻纤维/树脂基片状模塑料(SMC)复合材料性能的影响。研究表明:当剑麻纤维质量分数为10.0%时,硅烷偶联剂KH-570处理的SMC复合材料拉伸强度、弯曲强度、冲击强度分别提高了24.65%,25.42%,33.26%,力学性能最佳。SMC复合材料SEM显示,经过表面处理的剑麻纤维与树脂基体之间的界面黏结更紧密,黏结性增强。此外,用KH-570处理的SMC复合材料热稳定性最佳。  相似文献   

11.
剑麻纤维增强聚丙烯复合材料的制备及性能研究   总被引:2,自引:1,他引:2  
制备了剑麻纤维增强聚丙烯(PP)复合材料,考察了纤维含量及马来酸酐接枝PP(MPP)增容剂对复合材料孔隙率及力学性能的影响,并采用修正的数学模型分别对复合材料的拉伸强度和拉伸弹性模量进行预测。结果表明,随着纤维含量的增加,复合材料的孔隙率先增大后减小,纤维质量分数为30%时孔隙率达到最大值。未添加MPP增容剂时,复合材料的拉伸及弯曲性能在纤维质量分数小于30%时变化幅度较小,40%时则有较大幅度提高;冲击强度随着纤维含量增加而提高。当添加MPP增容剂时,复合材料的力学性能随纤维含量的增加而提高。拉伸性能的预测结果与实测结果比较一致。  相似文献   

12.
以稻壳、竹粉、杨木粉作为聚乳酸(PLA)的增强材料,添加硅烷偶联剂进行界面处理,采用模压成型的方法制备PLA木塑复合材料,研究了纤维的种类与含量以及偶联剂对PLA木塑复合材料力学性能和吸水性能的影响,并采用体式显微镜对其形貌和结构进行了表征。结果表明,杨木粉对PLA复合材料的增强效果最好;杨木粉、稻壳、竹粉质量分数为30%时,PLA木塑复合材料的拉伸强度最大,分别为16.26,11.27,14.17 MPa,杨木粉质量分数为30%时PLA木塑复合材料的冲击强度最大,为4.44 kJ/m~2,随着复合材料中木粉含量的增加,其吸水率呈上升趋势;添加硅烷偶联剂改性使PLA/竹粉复合材料的拉伸强度最大提高了119.74%,冲击强度最大提高了86.52%,改性后的木塑复合材料各组分较为均匀、空洞和缺陷较少。  相似文献   

13.
芦苇纤维增强低密度聚乙烯复合材料力学性能研究   总被引:1,自引:0,他引:1  
以芦苇纤维作增强剂,制备了低密度聚乙烯(PE-LD)/芦苇纤维复合材料,研究了芦苇纤维、马来酸酐接枝低密度聚乙烯(PE-LD-g-MAH)及硅灰石的含量对PE-LD/芦苇纤维复合材料力学性能的影响.结果表明,未加入增容剂PE-LD-g-MAH时,随芦苇纤维含量的增加,复合材料的拉伸强度和弯曲强度先略有增加而后降低,冲击强度则呈下降趋势;PE-LD-g-MAH提高了复合材料的拉伸强度和弯曲强度,当PE-LD-g-MAH质量分数为10%时,复合材料的力学性能最好;硅灰石及芦苇纤维的质量分数分别为10%和20%时,复合材料具有较好的力学性能.  相似文献   

14.
采用真空干燥箱对剑麻纤维进行预处理,并与聚乳酸(PLA)复合制备了剑麻纤维含量为50%的全降解环保型复合材料。研究了真空条件下剑麻纤维热处理温度、热处理时间对剑麻纤维成分、结构和复合材料性能的影响,并通过红外光谱和扫描电镜分析其作用机理。结果表明:在真空条件下,热处理使剑麻结构发生变化,半纤维素降解,改善了界面结合能力,且适宜的热处理温度、热处理时间有利于复合材料力学性能的提高。  相似文献   

15.
剑麻纤维增强聚乳酸可降解复合材料力学性能   总被引:1,自引:0,他引:1  
采用正交实验的方法,以纤维长径比、纤维含量和纤维的处理方式为因素,以剑麻纤维增强聚乳酸可降解复合材料的力学性能包括拉伸强度、拉伸模量、弯曲强度、弯曲模量和冲击强度为指标,运用极差和方差分析方法,探讨复合材料力学性能影响因素的敏感性,得到复合材料力学性能最佳的优化方案.  相似文献   

16.
采用剑麻纤维(SF)和长玻璃纤维(LGF)混杂增强聚丙烯(PP)复合材料,考察了SF/LGF的比例和含量对PP复合材料力学性能的影响。结果表明:SF/LGF在聚丙烯树脂基体中呈交叉网状分布,这有利于提高复合材料的冲击强度、弯曲模量、拉伸强度和软化点。在SF/LGF质量比为2 2∶,二者总质量分数为30%时,SF/LGF混杂增强PP复合材料的综合力学性能较好。  相似文献   

17.
将不同含量碱处理的剑麻纤维(SF)与酚醛树脂(PF)粉末、填科等在塑炼机上熔融混炼,通过模压成型工艺制备SF/PF复合材料,研究了SF含量对SF/PF复合材料力学性能、动态力学性能、摩擦磨损性能的影响,并借助SEM观察SF/PF复合材料磨损面的微观形貌.结果表明,SF含量(质量分数,下同)为15%时,SF/PF复合材料的冲击强度、弯曲强度分别为5.58 kJ/m2和67.69MPa,玻璃化转变温度(tg)达到204℃.与未加SF复合材料的相比tg提高13℃;SF含量为10%时,SF/PF复合材料的磨损体积为4.6×10-4cm3.SEM观察表明,sF含量10%时,SF与PF间的界面粘结性良好.  相似文献   

18.
采用蒸馏水、Na OH溶液、干法接枝马来酸酐(MAH)、酰化接枝月桂酸(GML)四种方式处理剑麻纤维(SF),用压制成型法制备纤维/聚乳酸(PLA)复合材料。利用红外光谱表征处理后的剑麻纤维。通过力学性能测试和扫描电镜分析表明,复合材料随着纤维含量的增多、层数增加,冲击强度与拉伸强度明显提高。加入70%的同向交错四层纤维时,SF/PLA复合材料的拉伸强度提高到104.5 MPa、冲击强度提高到135.86 J/m。纤维表面处理可以明显改善复合材料的界面相容性。  相似文献   

19.
采用自行设计的连续纤维/热塑性树脂浸润模具,用熔融浸渍法制备了连续长铝纤维增强高温尼龙复合材料,研究了铝纤维含量、相容剂含量、浸润模具温度、牵引速率对连续长铝纤维增强高温尼龙复合材料力学性能的影响。结果表明,当铝纤维质量分数为30%、相容剂质量分数为12%、浸渍模具温度为320℃、牵引速率为2.5 m/min时,制备的连续长铝纤维增强高温尼龙复合材料的力学性能较好,可满足客户的使用要求,复合材料的产量为500 kg/h。  相似文献   

20.
通过热压成型制备了竹原纤维增强可生物降解塑料复合材料,研究了材料的力学性能、热稳定性、断裂面的微观结构等,以及复合材料的微生物降解性能。研究结果表明,复合材料的拉伸强度和弯曲强度随竹原纤维含量增加而增加,当竹原纤维质量分数为16.67%时,复合材料的拉伸强度和弯曲强度较纯可降解塑料分别增加46.9%和93.1%,但断裂伸长率和冲击强度随着竹原纤维含量增加而降低。复合材料的热稳定性比纯可降解塑料和竹原纤维更好。在土壤微生物的作用下,复合材料在20 d时间的降解率可达19.4%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号