首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
以水产业中产生的虾壳为原料进行改性,通过静态吸附实验探究H2O2改性后的虾壳粉对水中U(Ⅵ)的吸附影响因素。结果表明,当U(Ⅵ)溶液pH=3,改性虾壳粉投加量为0.2 g/L,U(Ⅵ)溶液质量浓度为10 mg/L,吸附时间为120 min时,改性虾壳粉对U(Ⅵ)的吸附量达到48.58 mg/g,pH对改性虾壳粉吸附U(Ⅵ)有较大影响。对吸附过程中的动力学分析以及吸附前后的改性虾壳粉的SEM、FTIR等表征结果表明:改性虾壳粉对U(Ⅵ)的吸附过程符合准一级动力学方程和Freundlich吸附等温模型,改性虾壳粉对U(Ⅵ)吸附的主要官能团为羟基、氨基、磷酸基等基团。响应面分析结果表明,吸附时间一定时,改性虾壳粉对水中U(Ⅵ)的去除影响因素,pH改性虾壳粉投加量U(Ⅵ)溶液浓度。  相似文献   

2.
污泥基生物炭处理酸性含U(Ⅵ)废水的效能与机理   总被引:2,自引:0,他引:2       下载免费PDF全文
通过城市污泥(SS)慢速热解制备污泥基生物炭(SSB),并研究初始pH、投加量、共存离子、吸附时间和温度等因素对SSB去除U(Ⅵ)的影响,探讨吸附动力学和吸附等温线特征。通过元素分析、扫描电镜(SEM)、傅里叶红外光谱(FTIR)、X射线衍射(XRD)和X射线光电子能谱(XPS)分析U(Ⅵ)吸附去除的机理。结果表明SSB去除U(Ⅵ)的适宜条件为:pH=3、投加量1 g/L、吸附时间240 min;在此条件下,在温度30℃时最大吸附量为34.51 mg/g。吸附动力学符合拟二级动力学模型;Langmuir吸附等温模型能更好描述生物炭对U(Ⅵ)的吸附行为。U(Ⅵ)吸附去除机理主要包括静电作用,与Si—O—Si的n-π相互作用,与羟基(—OH)、羧基(—COOH)的配位络合。通过5次吸附-解吸试验发现,U(Ⅵ)去除率和SSB再生率均在80%以上。本研究表明污泥基生物炭具备处理与修复酸性含U(Ⅵ)废水污染的潜力。  相似文献   

3.
以城市污泥为原料制备出污泥基生物炭,并通过硝酸改性得到硝酸改性污泥基生物炭(SSB-AO),探究了SSB-AO投加量、溶液初始pH、离子强度、吸附时间、U(Ⅵ)初始质量浓度以及吸附温度等对SSB-AO去除U(Ⅵ)的影响,通过SEM-EDS、FTIR及XPS分析SSB-AO对U(Ⅵ)的去除机理。结果表明:SSB-AO对U(Ⅵ)的吸附符合拟二级动力学模型,吸附过程以化学吸附为主;等温吸附过程符合Langmuir模型。在30 ℃、NaNO3浓度为0.01 mol/L、吸附时间300 min、初始pH=6、U(Ⅵ)初始质量浓度为10~100 mg/L及SSB-AO投加量为0.6 g/L的条件下,SSB-AO去除U(Ⅵ)的理论最大吸附量为80.34 mg/g;通过5次吸附-解吸实验,其吸附率保持在88%以上,说明SSB-AO具有良好的重复使用性;SSB-AO去除U(Ⅵ)的机理为内表面络合作用、静电作用以及离子交换。研究显示硝酸处理污泥基生物炭能有效地提高其对U(Ⅵ)的吸附能力,为含U(Ⅵ)废水处理提供借鉴。  相似文献   

4.
采用戊二醛交联海藻酸钠固定化的腐殖酸,制备得到多孔性薄膜(GA-HA/SA),用于去除含铀废水中的铀(Ⅵ)。通过静态吸附实验,研究了pH值、初始浓度、接触时间、温度对GA-HA/SA吸附U(Ⅵ)效果的影响,进行了吸附过程的热力学与动力学分析;通过红外光谱(FTIR)、扫描电镜(SEM)、X射线能谱(EDS)探讨了相关吸附机理。实验结果表明,pH值为6时吸附效果最好,吸附在60 min基本达到平衡。吸附过程符合Langmuir和Dubinin-Radushkevich(D-R)等温模型;25℃时,最大吸附容量为312.5 mg·g-1。吸附动力学过程符合准二级速率方程(R2 >0.99),吸附速率的控速步骤为颗粒内扩散。GA-HA/SA对U(Ⅵ)的吸附是自发的吸热反应。SEM-EDS、FTIR和D-R模型分析结果表明,与U(Ⅵ)相互作用的基团主要是羧基,且GA-HA/SA吸附U(Ⅵ)的机理表现为离子交换。  相似文献   

5.
以分别含有单一的U(Ⅵ)、Cu(Ⅱ)溶液以及U(Ⅵ)、Cu(Ⅱ)混合溶液为吸附质,系统探讨了pH值、吸附剂量、温度、时间和初始离子浓度对向日葵秸秆吸附效果的影响。采用准二级动力学模型、Langmuir、Freundlich和Langmuir-Freundlich等温吸附模型对实验数据进行拟合,从分配系数和分离因子角度对吸附选择性进行分析,并对吸附机理进行探讨。结果表明:向日葵秸秆对U(Ⅵ)和Cu(Ⅱ)的吸附分别是自发的吸热和放热反应;吸附动力学均符合准二级动力学模型,即化学吸附为控速步骤;单离子体系下U(Ⅵ)和Cu(Ⅱ)的吸附等温线分别符合Langmuir-Freundlich和Langmuir等温吸附模型;复配体系下,当干扰Cu(Ⅱ)浓度≥60 mg·L-1时,U(Ⅵ)的吸附等温线可用Langmuir-Freundlich模型描述;而当干扰U(Ⅵ)浓度≥200 mg·L-1时,Cu(Ⅱ)的吸附等温线可用Langmuir模型描述。当溶液中同时存在U(Ⅵ)和Cu(Ⅱ)两种离子时,离子间存在竞争吸附,且向日葵秸秆对U(Ⅵ)具有更高的选择性,这与金属本身的特性有关。向日葵秸秆吸附前后的SEM、EDX和FT-IR图谱表明,吸附U(Ⅵ)和Cu(Ⅱ)的主要方式为络合和离子交换。  相似文献   

6.
以凹凸棒土、海泡石、硅藻土等为原料制备了颗粒状的纳米矿晶(NMC)吸附剂,研究了NMC在不同pH值、NMC用量、吸附时间和铀离子(U(Ⅵ))初始质量浓度对U(Ⅵ)的去除效能的影响。通过扫描电镜、X射线能谱仪、红外光谱等检测手段解析了NMC吸附U(Ⅵ)的机理。研究结果表明:NMC适用于酸性条件下处理含铀废水。当含铀废水pH值、U(Ⅵ)质量浓度、NMC投加量分别为2.0,20.0 mg/L,30℃,7.0 g/L时,废水中U(Ⅵ)去除效率高达97.4%。NMC吸附U(Ⅵ)的过程以化学吸附为主,准二级吸附动力学模型相关系数R~2=0.991。扫描电镜和X射线能谱分析发现,U(Ⅵ)主要吸附在NMC的表面孔内;红外光谱分析结果表明配位、络合、离子交换也可能是NMC吸附U(Ⅵ)的机理,参与的主要基团有—OH,CO,C—N,NH~+,C—H和Si—OH。  相似文献   

7.
胡世琴  杨斌  范甲  杨金辉  张震  谢水波 《精细化工》2021,38(12):2566-2572,2585
对废弃卷烟烟叶进行炭化处理后再引入氨基功能基团制备了氨基化烟叶生物炭吸附剂(ATC),通过SEM、FTIR、XPS对ATC进行了表征,考察了pH、ATC投加量、温度、吸附时间、U(Ⅵ)初始质量浓度对ATC吸附U(Ⅵ)的影响.结果表明,在U(Ⅵ)初始质量浓度为250 mg/L、pH=6、ATC投加量为0.2 g/L、温度为40℃、吸附时间为210 min时,ATC对U(Ⅵ)的最大理论吸附量为495.04 mg/g.吸附动力学符合准二级动力学模型;Langmuir吸附等温模型能更好地描述ATC对U(Ⅵ)的吸附行为.ATC对U(Ⅵ)的吸附去除机理主要包括静电相互作用,与 —NH2、—OH、—COOH的配位络合,与Si—O—Si的"π-π"相互作用.5次吸附-解吸实验后,ATC对U(Ⅵ)的吸附率在86.71%以上.  相似文献   

8.
胡世琴  杨斌  范甲  杨金辉  张震  谢水波 《精细化工》2021,38(12):2566-2572,2585
对废弃卷烟烟叶进行炭化处理后再引入氨基功能基团制备了氨基化烟叶生物炭吸附剂(ATC),通过SEM、FTIR、XPS对ATC进行了表征,考察了pH、ATC投加量、温度、吸附时间、U(Ⅵ)初始质量浓度对ATC吸附U(Ⅵ)的影响.结果表明,在U(Ⅵ)初始质量浓度为250 mg/L、pH=6、ATC投加量为0.2 g/L、温度为40℃、吸附时间为210 min时,ATC对U(Ⅵ)的最大理论吸附量为495.04 mg/g.吸附动力学符合准二级动力学模型;Langmuir吸附等温模型能更好地描述ATC对U(Ⅵ)的吸附行为.ATC对U(Ⅵ)的吸附去除机理主要包括静电相互作用,与 —NH2、—OH、—COOH的配位络合,与Si—O—Si的"π-π"相互作用.5次吸附-解吸实验后,ATC对U(Ⅵ)的吸附率在86.71%以上.  相似文献   

9.
以粉煤灰铝回收过程的脱硅液为原料,通过控制钙硅摩尔比的常规沉淀法制备得到大比表面积介孔C-S-H(401 m2·g?1),系统研究了初始浓度、投加量、p H和离子强度对C-S-H吸附U(Ⅵ)过程的影响,以及吸附的热动力学特征,并评价了C-S-H去除实际含铀废水中毒性金属的性能。结果表明,通过控制合成条件实现了低品质硅钙渣向高附加值吸附材料的转变。0.75 g·L?1 C-S-H在p H 2仍具有较高的平衡吸附容量(qe=67.9 mg·g?1),在富含CO32?的碱性溶液中UO2(H2O)52+转变为UO2(CO3)34?不利于带负电的C-S-H表面吸附U(Ⅵ)。当C-S-H投加量升高至2~5 g·L?1,材料对U(Ⅵ)的吸附去除效率即能维持在相对较高水平(C[U(Ⅵ)]initial=500 mg·L?1,去除率88.3%~93.5%),吸附可在数小时内达到平衡,符合拟二级动力学模型和两阶段Weber-Morris方程模型,吸附等温线符合Langmuir模型,吸附机理主要为离子交换(84.6%)和表面络合。材料对含铀废水中的U、Zn、Hg、Mn和Cd均表现出良好的吸附去除性能,因而C-S-H可成为在废水毒性金属去除方面极具应用前景的材料。  相似文献   

10.
采用酸刻蚀及氧化处理技术制备了氧化氮化碳(OCN)纳米材料,探究了OCN对水中U(Ⅵ)的吸附-解吸性能。考察了溶液pH、温度、OCN投加量、反应时间、U(Ⅵ)初始浓度等因素对OCN吸附U(Ⅵ)的影响,并探讨了吸附机制。结果表明:OCN对U(Ⅵ)有良好的吸附效果,在pH=5、30℃、U(Ⅵ)的初始质量浓度为10 mg/L,OCN的投加量为200 mg/L时,OCN对U(Ⅵ)吸附率达98.9%,比未改性的石墨相氮化碳(g-C_3N_4)吸附U(Ⅵ)的性能提高了约42.82%,吸附反应在10 min即到达吸附平衡。pH是影响OCN吸附U(Ⅵ)的重要影响因素,温度等因素对U(Ⅵ)的吸附影响较小。拟二级动力学方程和Langmuir模型很好地拟合了吸附过程,OCN对U(Ⅵ)的吸附过程为自发的吸热过程。吸附解吸实验结果表明,OCN具有良好的重复利用性。  相似文献   

11.
以废弃卷烟烟叶为原材料,对其进行碳化处理后再引入氨基功能团制备氨化烟叶生物碳吸附剂(ATC),研究pH、投加量、温度、吸附时间对ATC吸附U(VI)的影响。通过扫描电镜(SEM)、傅里叶红外光谱(FTIR)、X射线光电子能谱(XPS)等技术进行机理分析。结果表明:在初始浓度为250mg/L、pH=6、投加量为0.2 g/L、温度为40 ℃、吸附时间为210 min,ATC对U(VI)的最大吸附量为495.04mg/g。吸附动力学符合准二级动力学模型;Langmuir吸附等温模型能更好描述ATC对U(Ⅵ)的吸附行为。U(Ⅵ)吸附去除机理主要包括静电相互作用,与氨基(-NH2)、羟基 (-OH)、羧基 (-COOH)的配位络合,与 Si-O-Si的“π-π“相互作用。通过5次吸附-解吸试验发现,U(Ⅵ)去除率在86.71%以上。本研究表明氨化烟叶生物碳具备处理与修复弱酸性含U(Ⅵ)废水污染的潜力。  相似文献   

12.
由于混凝过程会对水中的铬(Ⅵ)发生吸附,因此采用混凝过程去除水中的铬(Ⅵ)。考查了三种混凝剂在混凝过程对铬(Ⅵ)的吸附,用最佳混凝剂考查初始浓度、搅拌时间、静置时间以及pH对铬(Ⅵ)吸附的影响。一般选择聚丙烯酰胺作为混凝剂,搅拌时间4min左右,静置5min左右,pH值为7,会对铬(Ⅵ有一个较好的去除效果。化学混凝过程对铬(Ⅵ)的吸附符合拟一级动力学模型。  相似文献   

13.
茶渣吸附U(Ⅵ)的特性   总被引:10,自引:5,他引:5  
刘希涛  李广悦  胡南  王永东  丁德馨 《化工学报》2012,63(10):3291-3296
通过静态吸附实验,考察了铀溶液初始pH、初始浓度以及吸附时间、吸附剂粒度、温度对茶渣吸附U(Ⅵ)的影响,分析了吸附过程的动力学行为及等温吸附特性,并通过红外光谱和扫描电镜探讨了吸附机理。结果表明:pH对茶渣吸附U(Ⅵ)的影响较大,pH为2和6时吸附量分别为13.90、43.19 mg·g-1。茶渣吸附U(Ⅵ)的过程较慢,吸附过程需要12 h才能达到平衡。吸附过程的准二级动力学方程的拟合效果优于准一级动力学方程。吸附量随铀溶液浓度的增加而增大,而吸附率则相反。铀溶液初始浓度为10~100 mg·L-1,相应的吸附量为9.40~70.05 mg·g-1,吸附率为94.04%~70.05%。茶渣吸附U(Ⅵ)的动力学行为更符合准二级动力学方程,等温吸附数据对Freundlich方程的拟合度较高。茶渣粒度及温度对茶渣吸附U(Ⅵ)的影响不大。茶渣吸附U(Ⅵ)的过程中,起主要作用的基团有羟基、羰基、硝基、P-O、Si-O。  相似文献   

14.
通过静态吸附实验,考察了铀溶液初始pH、初始浓度以及吸附时间、吸附剂粒度、温度对茶渣吸附U(Ⅵ)的影响,分析了吸附过程的动力学行为及等温吸附特性,并通过红外光谱和扫描电镜探讨了吸附机理。结果表明:pH对茶渣吸附U(Ⅵ)的影响较大,pH为2和6时吸附量分别为13.90、43.19 mg·g-1。茶渣吸附U(Ⅵ)的过程较慢,吸附过程需要12 h才能达到平衡。吸附过程的准二级动力学方程的拟合效果优于准一级动力学方程。吸附量随铀溶液浓度的增加而增大,而吸附率则相反。铀溶液初始浓度为10~100 mg·L-1,相应的吸附量为9.40~70.05 mg·g-1,吸附率为94.04%~70.05%。茶渣吸附U(Ⅵ)的动力学行为更符合准二级动力学方程,等温吸附数据对Freundlich方程的拟合度较高。茶渣粒度及温度对茶渣吸附U(Ⅵ)的影响不大。茶渣吸附U(Ⅵ)的过程中,起主要作用的基团有羟基、羰基、硝基、P—O、Si—O。  相似文献   

15.
考察了弱磁场(WMF)对零价铁去除水中U(Ⅵ)效能的影响,并探讨了其主要机理。结果表明,在初始pH(pHini)为3.0~7.0,有弱磁场(w/WMF)的条件下,零价铁去除U(Ⅵ)的一级动力学速率常数提高了0.7~11.2倍。当初始pH为4.0、零价铁的投加量为0.5 g·L~(-1)时,弱磁场作用下的零价铁对U(Ⅵ)的去除容量为1.7 g·g~(-1),相比无弱磁场(w/o WMF)时提高了约0.3倍。pH变化、Fe~(2+)浓度和SEM的结果说明,弱磁场通过促进零价铁的腐蚀促进其对U(Ⅵ)的去除。从XPS光谱分析中发现,零价铁去除U(Ⅵ)的主要机理为先吸附、后还原。弱磁场只能够加速其吸附和还原过程,而不能影响零价铁对U(Ⅵ)的去除机理。弱磁场促进零价铁去除U(Ⅵ)具有价格低廉、环境友好、无须额外的能量和药剂投入等优点,因而有良好的应用前景。  相似文献   

16.
采用分光光度法和批处理法研究了U(Ⅵ)在FeCl_3改性红壤上的吸附行为,并探讨了pH、离子强度、腐植酸、接触时间、温度等因素对吸附行为的影响。对天然红壤(NRE)和改性红壤(IMRE)进行SEM、XRD和FTIR表征,并讨论了U(Ⅵ)在改性红壤上的吸附动力学以及热力学行为。结果表明,改性红壤较天然红壤有更强的吸附能力,准二阶动力学模型可以用来描述铀在改性红壤上的吸附。通过对溶液pH和离子强度因素的研究,当溶液的pH8时吸附率随pH的升高而增大;随着pH的继续上升,吸附率则逐渐降低,并发现高离子强度不利于对铀的吸附。在较低pH下,腐植酸对吸附有加强的作用,而随着pH的上升,腐植酸对吸附有抑制作用。Freundlich模型可以较好地描述改性红壤对U(Ⅵ)的热力学吸附过程。相应的热力学函数表明,改性红壤对U(Ⅵ)的吸附为自发且吸热的过程。  相似文献   

17.
采用化学沉积法制备了微晶纤维素负载二氧化锰水凝胶(MCC@MnO2/SA),用于吸附水中U(Ⅵ)。通过SEM-EDS、FTIR、XPS对水凝胶进行表征,并考察了不同pH值、接触时间、温度、U(Ⅵ)初始浓度条件下MCC@MnO2/SA对U(Ⅵ)的吸附影响。结果表明,在U(Ⅵ)初始浓度为10 mg/L、pH值为4、温度为303 K,吸附6 h时,MCC@MnO2/SA对U(Ⅵ)的最大吸附量达234.11 mg/g,比改性前提高了11%左右。吸附过程符合拟二级动力学,其等温吸附模型更契合Langmuir,主要为单分子层化学吸附,吸附是自发吸热过程;主要吸附机理是化学吸附和共价金属离子与表面电子结合产生的价力,MnO2提供了更多官能团。该水凝胶经5次循环后去除率仍保持78%以上,具有再生利用性。  相似文献   

18.
将聚乙烯亚胺(PEI)接枝到氧化石墨烯(GO)表面,得到聚乙烯亚胺修饰的氧化石墨烯(GO-PEI)材料。通过FTIR、XRD、TGA对GO-PEI的结构及PEI接枝量进行表征,并研究其对水中Cr(Ⅵ)的吸附性能。结果表明,PEI成功接枝到GO表面,其氨基含量为13.72 mmol/g。GO-PEI对Cr(Ⅵ)表现出优良的吸附性能,其吸附过程符合Langmuir等温吸附模型和准二级动力学模型。GO-PEI对Cr(Ⅵ)的去除是吸附与化学还原共同作用的结果。  相似文献   

19.
艾莲  罗学刚  王昱豪  梅强 《化工学报》2014,65(4):1450-1461
以分别含有单一的U(Ⅵ)、Cu(Ⅱ)溶液以及U(Ⅵ)、Cu(Ⅱ)混合溶液为吸附质,系统探讨了pH值、吸附剂量、温度、时间和初始离子浓度对向日葵秸秆吸附效果的影响。采用准二级动力学模型、Langmuir、Freundlich和Langmuir-Freundlich等温吸附模型对实验数据进行拟合,从分配系数和分离因子角度对吸附选择性进行分析,并对吸附机理进行探讨。结果表明:向日葵秸秆对U(Ⅵ)和Cu(Ⅱ)的吸附分别是自发的吸热和放热反应;吸附动力学均符合准二级动力学模型,即化学吸附为控速步骤;单离子体系下U(Ⅵ)和Cu(Ⅱ)的吸附等温线分别符合Langmuir-Freundlich和Langmuir等温吸附模型;复配体系下,当干扰Cu(Ⅱ)浓度≥60 mg·L-1时,U(Ⅵ) 的吸附等温线可用Langmuir-Freundlich模型描述;而当干扰U(Ⅵ)浓度≥200 mg·L-1时,Cu(Ⅱ)的吸附等温线可用Langmuir模型描述。当溶液中同时存在U(Ⅵ)和Cu(Ⅱ)两种离子时,离子间存在竞争吸附,且向日葵秸秆对U(Ⅵ)具有更高的选择性,这与金属本身的特性有关。向日葵秸秆吸附前后的SEM、EDX和FT-IR图谱表明,吸附U(Ⅵ)和Cu(Ⅱ)的主要方式为络合和离子交换。  相似文献   

20.
通过海藻酸钠包裹氧化石墨烯(GO)和Bacillus,合成了吸附剂Bacillus-GO.对吸附前和吸附后的Bacillus-GO进行了表征,通过单因素实验研究了pH、反应时间、初始U(Ⅵ)含量、吸附剂用量等对Bacillus-GO吸附U(Ⅵ)的影响,并运用动力学和等温线研究了吸附过程.结果 表明,在pH为6.0、吸附...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号