首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Little is known of the distribution of cell surface molecules during the adhesion and migration of leucocytes on endothelial cells. We have used confocal microscopy and a Fab fragment of a non-inhibitory monoclonal antibody recognizing the integrin CD11b/CD18 (Mac-1) to study the movement of this adhesion molecule over time. We found that during the initial stage of neutrophil contact with TNF-α activated human umbilical vein endothelial cells (HUVEC), there is a rapid accumulation of Mac-1 at the contact area between the two cell types. As the neutrophil spreads, Mac-1 redistributes away from this initial contact area. During neutrophil migration on HUVEC, Mac-1 was redistributed to the leading edge of the migrating cell, suggesting that the existing cell surface pool of adhesion molecules is dynamic and can be recruited to the leading front as the cell changes direction. As neutrophils migrate on HUVEC, Mac-1-dense macroaggregates are rapidly formed and broken down at the contact plane between the two cells. The confocal microscope, coupled with the use of non-inhibitory antibodies labelled with photostable fluorophores, is a useful tool for the study of the movement of cell surface molecules over time.  相似文献   

2.
Multicolour structured illumination microscopy (SIM) is a powerful tool used for the investigation of the dynamic interaction between subcellular structures. Nevertheless, most of the multicolour SIM schemes are currently limited by conventional fluorescent dyes and wavelength-dependent optical systems, and can only sequentially record images of different colour channels instead of obtaining multicolour datasets simultaneously. To address these issues, we present a novel multicolour SIM scheme referred to as quantum dot structured illumination microscopy (QD-SIM). QD-SIM enables simultaneously excitation and collection of multicolour fluorescent signals. We also propose a theoretical analysis of the image formation in two-dimensional multicolour SIM to help combine the optically sectioned and super-resolution attributes of SIM. Based on this theory, QD-SIM enables optically sectioned, super-resolution, multicolour simultaneous imaging at a single plane.  相似文献   

3.
The dynamics of cell surface membrane proteins plays an important role in cell–cell interactions. The onset of the interaction is typically not precisely controlled by current techniques, making especially difficult the visualization of early-stage dynamics. We have developed a novel method where optical tweezers are used to trap cells and precisely control in space and time the initiation of interactions between a cell and a functionalized surface. This approach is combined with total internal reflection fluorescence microscopy to monitor dynamics of membrane bound proteins. We demonstrate an accuracy of ∼2 s in determining the onset of the interaction. Furthermore, we developed a data analysis method to determine the dynamics of cell adhesion and the organization of membrane molecules at the contact area. We demonstrate and validate this approach by studying the dynamics of the green fluorescent protein tagged membrane protein activated leukocyte cell adhesion molecule expressed in K562 cells upon interaction with its ligand CD6 immobilized on a coated substrate. The measured cell spreading is in excellent agreement with existing theoretical models. Active redistribution of activated leukocyte cell adhesion molecule is observed from a clustered to a more homogenous distribution upon contact initiation. This redistribution follows exponential decay behaviour with a characteristic time of 35 s.  相似文献   

4.
Fluorescent dyes added to UV-cure resins allow the rapid fabrication of fluorescent micropatterns on standard glass coverslips by two-photon optical lithography. We use this lithographic method to tailor fiduciary markers, focal references, and calibration tools, for fluorescence and laser scanning microscopy. Fluorescent microlithography provides spatial landmarks to quantify molecular transport, cell growth and migration, and to compensate for focal drift during time-lapse imaging. We show that the fluorescent patterned microstructures are biocompatible with cultures of mammalian cell lines and hippocampal neurons. Furthermore, the high-relief topology of the lithographed substrates is utilized as a mold for poly(dimethylsiloxane) stamps to create protein patterns by microcontact printing, representing an alternative to the current etching techniques. We present two different applications of such protein patterns for localizing cell adhesion and guidance of neurite outgrowth.  相似文献   

5.
The combination of the capabilities of light microscopical techniques with the power of resolution of electron microscopy along with technical advances has led to a gradual decline of the gap between classical light and electron microscopy. Among the correlative techniques using the synergistic opportunities, photooxidation methods have been established as valuable tools for visualizing cell structures at both light and electron microscopic level. Fluorescent dyes are used to oxidize the substrate diaminobenzidine, which in its oxidized state forms fine granular precipitates. Stained with osmium, the diaminobenzidine precipitates are well discernible in the electron microscope, thus labelling and defining the cellular structures, which at light microscopy level are recorded by fluorescent probes. The underlying photooxidation reaction is based on the excitation of free oxygen radicals that form upon illumination of fluorochromes; this is a central step in the procedure, which mainly influences the success of the method. This article summarizes basic steps of the technology and progresses, shows efforts and elaborated pathways, and focuses on methodical solutions as to the applicability of different fluorochromes, as well as conditions for fine structural localizations of the reaction products.  相似文献   

6.
Although single-photon fluorescence lifetime imaging microscopy (FLIM) is widely used to image molecular processes using a wide range of excitation wavelengths, the captured emission of this technique is confined to the visible spectrum. Here, we explore the feasibility of utilizing near-infrared (NIR) fluorescent molecular probes with emission >700 nm for FLIM of live cells. The confocal microscope is equipped with a 785 nm laser diode, a red-enhanced photomultiplier tube, and a time-correlated single photon counting card. We demonstrate that our system reports the lifetime distributions of NIR fluorescent dyes, cypate and DTTCI, in cells. In cells labelled separately or jointly with these dyes, NIR FLIM successfully distinguishes their lifetimes, providing a method to sort different cell populations. In addition, lifetime distributions of cells co-incubated with these dyes allow estimate of the dyes' relative concentrations in complex cellular microenvironments. With the heightened interest in fluorescence lifetime-based small animal imaging using NIR fluorophores, this technique further serves as a bridge between in vitro spectroscopic characterization of new fluorophore lifetimes and in vivo tissue imaging.  相似文献   

7.
Eight different commercially available fluorescent dyes (fluorochromes) were tested for suitability for use in low-viscosity epoxy resin. Dyes were compared based on solubility in different solvents and epoxy resin and a numerical criterion for each dye's fluorochromicity. The two best dyes, based upon the brightness of each dye after illumination by a UV source, were Hostasol Red GG and Hostasol Yellow 3G. These two dyes in epoxy resin were used to visualize impregnation and remnant porosity in porous superconductor ceramic pellets. The impregnant was either cured epoxy or a low melting point alloy.  相似文献   

8.
We evaluate the suitability of conventional sample preparation and labelling methods for two superresolution techniques, structured illumination microscopy and direct stochastic optical reconstruction microscopy, by a comparison to established confocal laser scanning microscopy. We show that SIM is compatible with standard fixation procedures and immunofluorescence labelling protocols and improves resolution by a factor of two compared to confocal laser scanning microscopy. With direct stochastic optical reconstruction microscopy, fluorophores can theoretically be localized with much higher precision. However, in practice, with indirect immunofluorescence labelling density can be insufficient due to the bulky probes to reveal biological structures with high resolution. Fine structures like single actin fibres are in fact resolved with direct stochastic optical reconstruction microscopy when using small affinity probes, but require proper adjustment of the fixation protocol. Finally, by a direct comparison of immunofluorescent and genetic labelling with fluorescent proteins, we show that target morphology in direct stochastic optical reconstruction microscopy data sets can differ significantly depending on the labelling method and the molecular environment of the target.  相似文献   

9.
Image cross-correlation microscopy is a technique that quantifies the motion of fluorescent features in an image by measuring the temporal autocorrelation function decay in a time-lapse image sequence. Image cross-correlation microscopy has traditionally employed laser-scanning microscopes because the technique emerged as an extension of laser-based fluorescence correlation spectroscopy. In this work, we show that image correlation can also be used to measure fluorescence dynamics in uniform illumination or wide-field imaging systems and we call our new approach uniform illumination image correlation microscopy. Wide-field microscopy is not only a simpler, less expensive imaging modality, but it offers the capability of greater temporal resolution over laser-scanning systems. In traditional laser-scanning image cross-correlation microscopy, lateral mobility is calculated from the temporal de-correlation of an image, where the characteristic length is the illuminating laser beam width. In wide-field microscopy, the diffusion length is defined by the feature size using the spatial autocorrelation function. Correlation function decay in time occurs as an object diffuses from its original position. We show that theoretical and simulated comparisons between Gaussian and uniform features indicate the temporal autocorrelation function depends strongly on particle size and not particle shape. In this report, we establish the relationships between the spatial autocorrelation function feature size, temporal autocorrelation function characteristic time and the diffusion coefficient for uniform illumination image correlation microscopy using analytical, Monte Carlo and experimental validation with particle tracking algorithms. Additionally, we demonstrate uniform illumination image correlation microscopy analysis of adhesion molecule domain aggregation and diffusion on the surface of human neutrophils.  相似文献   

10.
乌拉  郑玉祥 《光学仪器》2017,39(1):81-87
"衍射极限"实际上不是一个真正的障碍,除非处理远场和定位精度。这种衍射障碍并不是坚不可摧的,可以利用一些智能技术来突破光学衍射极限。讨论了四种技术,近场扫描光学显微镜(NSOM)法,受激发射损耗(STED)显微镜法,光激活定位显微镜(PALM)法或随机光学重建显微镜(STORM)法和结构照明显微镜(SIM)法,并且介绍了各自的基本原则与优劣。NSOM利用纳米级探测器检测通过光纤的极小汇聚光斑,从而获得单个像素的分辨率;PALM和STORM利用荧光探针,实现暗场和荧光的转换,从而观察到极小的荧光团;SIM则是利用栅格图案与样品叠加成像来实现。其中,STORM具有相对较高的潜力,能够更为有效地突破衍射极限。  相似文献   

11.
The application of confocal laser scanning microscopy (CLSM) to the study of xenobiotic uptake into plant foliage is explored in this paper. Three fluorescent dyes of low molecular weight and contrasting polarities (hydrophilic, moderately lipophilic and lipophilic) were selected to represent foliage‐applied pesticides. These model compounds were applied as droplets to the surfaces of various leaves and/or fruits according to the particular experiment. The transcuticular diffusion behaviour, the compartmentation into epidermal cells and the influence of a surfactant on the uptake of these fluorescent compounds were visualized by CLSM. Distinct differences in diffusion speed across the cuticle and distribution in cell compartments were found between different fluorescent compounds. The presence of a surfactant significantly accelerated the uptake of the moderately lipophilic dye into both thin‐ and thick‐cuticled leaves. The results are discussed in relation to the current knowledge on pesticide uptake and translocation. The advantages and limitations of this technique are highlighted.  相似文献   

12.
Test systems for measuring cell viability in optical microscopy (based on colony formation ability or lysosomal integrity) were established and applied to native cells as well as to cells incubated with fluorescence markers or transfected with genes encoding for fluorescent proteins. Human glioblastoma and Chinese hamster ovary cells were irradiated by various light doses, and maximum doses where at least 90% of the cells survived were determined. These tolerable light doses were in the range between 25 J cm?2 and about 300 J cm?2 for native cells (corresponding to about 250?3000 s of solar irradiance and depending on the wavelength as well as on the mode of illumination, e.g. epi‐ or total internal reflection illumination) and decreased to values between 50 J cm?2 and less than 1 J cm?2 upon application of fluorescent markers, fluorescent proteins or photosensitizers. In high‐resolution wide field or laser scanning microscopy of single cells, typically 10?20 individual cell layers needed for reconstruction of a 3D image could be recorded with tolerable dose values. Tolerable light doses were also maintained in fluorescence microscopy of larger 3D samples, e.g. cell spheroids exposed to structured illumination, but may be exceeded in super‐resolution microscopy based on single molecule detection.  相似文献   

13.
Thin cross-sections of human hairs were investigated by scanning near-field optical microscopy (SNOM) and confocal laser scanning microscopy (CLSM) after penetration of a fluorescent dye. The same samples were measured with both techniques to compare the observed structures. The images obtained from the two methods show nearly identical structures representing pathways of the dye molecules in hairs. The SNOM images provide a higher resolution than the CLSM images. Therefore, SNOM is believed to be a suitable method for investigations at a resolution of 100 nm on penetration pathways of fluorescent dyes such as the cell membrane complex pathway in cross-sections of hairs.  相似文献   

14.
Two-photon fluorescence surface wave microscopy   总被引:1,自引:0,他引:1  
This paper demonstrates the principle of two-photon surface wave microscopy with a view to applications on biological samples. We describe a modified scanning optical microscope, which uses specially prepared coverslips. These coverslips are designed to support the propagation of surface waves capable of large field enhancements. We also discuss the beam conditioning necessary to ensure efficient use of the available illumination. Two-photon surface wave fluorescent excitation is demonstrated on fluorescent nanospheres, demonstrating a point spread function width of ≈220 nm at an illumination wavelength of 925 nm. The potential of non-linear surface wave excitation for both fluorescence and harmonic imaging microscopy is discussed.  相似文献   

15.
Using fluorescent dyes to trigger the polymerization of a commercial polyurethane resin allows a rapid fabrication of micrometer and submicrometer sized fluorescent structures by one‐photon absorption. Here, we show that standard He–Ne lasers emitting at 632.8 nm can be used to start the photopolymerization and that very low laser power is required. This procedure allows the fabrication of fiduciary fluorescent references on standard glass coverslips, mica sheets, or gold‐coated coverslips for laser scanning or standard fluorescent microscopy. The biocompatibility of the polymerized resin with cells in culture was tested by growing Xenopus melanophores and a standard laser scanning microscope was used to demonstrate that it is possible to use equipment readily available in several laboratories. We show that fluorescent structure with less than 10 nm in height may be used as references in fluorescence microscopy allowing a smooth environment for cell growth. Different dyes were tested and the conditions for one‐photon polymerization were outlined. Microsc. Res. Tech. 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
17.
Booth  Hell 《Journal of microscopy》1998,190(3):298-304
We report on efficient two-photon fluorescence imaging in beam scanning microscopy by exciting UV dyes at the 647-nm line of a continuous wave ArKr mixed gas laser. For a numerical aperture of 1.4 (oil), we used an illumination power of up to 210 mW at the sample. High-resolution images were obtained for DAPI-labelled cell nuclei within 4–60 s. Our method is a simple two-photon alternative to UV confocal imaging with the potential of becoming a very useful feature of laser scanning microscopy.  相似文献   

18.
Fluorescent quantum dots (QDs) are a new class of fluorescent label and have been extensively used in cell imaging. Streptavidin-conjugated QDs have a diameter of ca. 10–15 nm; therefore when used as probes to label cell-surface biomolecules, they can provide contrast enhancement under atomic force microscopy (AFM) and allow specific proteins to be distinguished from the background. In addition, the size and fluorescent properties potentially make them as probes in correlative fluorescence microscopy (FM) and AFM. In this study, we tested the feasibility of using QD-streptavidin conjugates as probes to label wheat germ agglutinin (WGA) receptors on the membrane of human red blood cells (RBCs) and simultaneously obtain fluorescence and AFM images. The results show that the distribution of QDs labeled on human RBCs was non-uniform and that the number of labeled QDs on different erythrocytes varied significantly, which perhaps indicates different ages of the erythrocytes. Thus, QDs may be employed as bifunctional cell-surface markers for both FM and AFM to quantitatively investigate the distribution and expression of membrane proteins or receptors on cell surface.  相似文献   

19.
Metformin is a first-line drug in the fight against type 2 diabetes. In recent years, studies have shown that metformin has some preventive and therapeutic effects on liver cancer, but the effects of metformin on the gene expression of liver cancer cells are not fully known. This study focused on the differences in the gene expression profiles in liver cancer cells treated with or without metformin. A total of 153 differentially expressed genes (DEGs) (FC > 2 and q-values < 0.001) were found, including 77 upregulated genes and 76 downregulated genes. These DEGs are involved in mitogen-activated protein kinase (MAPK), nuclear factor-kappa B (NF-κB), cell adhesion molecules (CAMs), and leukocyte transendothelial migration signaling pathways. These findings reveal the effects of metformin treatment on gene expression profiles in liver cancer cells and provide new clues for unveiling the mechanism of the antitumor effects of metformin.  相似文献   

20.
Phase‐contrast illumination is simple and most commonly used microscopic method to observe nonstained living cells. Automatic cell segmentation and motion analysis provide tools to analyze single cell motility in large cell populations. However, the challenge is to find a sophisticated method that is sufficiently accurate to generate reliable results, robust to function under the wide range of illumination conditions encountered in phase‐contrast microscopy, and also computationally light for efficient analysis of large number of cells and image frames. To develop better automatic tools for analysis of low magnification phase‐contrast images in time‐lapse cell migration movies, we investigated the performance of cell segmentation method that is based on the intrinsic properties of maximally stable extremal regions (MSER). MSER was found to be reliable and effective in a wide range of experimental conditions. When compared to the commonly used segmentation approaches, MSER required negligible preoptimization steps thus dramatically reducing the computation time. To analyze cell migration characteristics in time‐lapse movies, the MSER‐based automatic cell detection was accompanied by a Kalman filter multiobject tracker that efficiently tracked individual cells even in confluent cell populations. This allowed quantitative cell motion analysis resulting in accurate measurements of the migration magnitude and direction of individual cells, as well as characteristics of collective migration of cell groups. Our results demonstrate that MSER accompanied by temporal data association is a powerful tool for accurate and reliable analysis of the dynamic behaviour of cells in phase‐contrast image sequences. These techniques tolerate varying and nonoptimal imaging conditions and due to their relatively light computational requirements they should help to resolve problems in computationally demanding and often time‐consuming large‐scale dynamical analysis of cultured cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号