首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
纤维金属层板制备成形的研究现状及发展趋势   总被引:2,自引:0,他引:2       下载免费PDF全文
随着航空航天和汽车等结构领域对轻量化的要求越来越高,纤维金属层板作为一种新型混杂复合材料得到广泛的关注。综述了纤维金属层板的最新研究进展,主要对纤维金属层板进行了3种不同类型的分类,并对其在飞机和汽车上的应用做了分析,介绍了纤维金属层板制备成形的国内外研究现状,以及针对纤维增强树脂体系的不同而采用的纤维金属层板的2种成形制备工艺:层压固化制备工艺(包括滚弯成形、喷丸成形)和金属塑性成形工艺(冲压成形、充液成形等),最后对纤维金属层板的特性及其在未来航空航天和汽车制造上的生产应用进行了展望。  相似文献   

2.
Glass-reinforced aluminum laminate (GLARE) is a new class of fiber metal laminates (FMLs) which has the advantages such as high tensile strength, outstanding fatigue, impact resistance, and excellent corrosion properties. GLARE has been extensively applied in advanced aerospace and automobile industries. However, the deformation behavior of the glass fiber during forming must be studied to the benefits of the good-quality part we form. In this research, we focus on the effect of fiber layer orientation on the GLARE laminate formability in stamp forming process. Experimental and numerical analysis of stamping a hemisphere part in different fiber orientation is investigated. The results indicate that unidirectional and multi-directional fiber in the middle layer make a significant effect on the thinning and also surface forming quality of the three layer sheet. Furthermore, the stress-strain distribution of the aluminum alloy and the unique anisotropic property of the fiber layer exhibit that fiber layer orientation can also affect the forming depths as well as the fracture modes of the laminate. According to the obtained results, it is revealed that multi-directional fiber layers are a good alternative compared to the unidirectional fibers especially when a better formability is the purpose.  相似文献   

3.
纤维金属层板(Fiber Metal Laminate, FMLs)作为一类兼具金属和复合材料优势的超混杂材料,凭借其优异的性能在航空航天和汽车领域应用广泛,其中商业化最成功的是玻璃纤维增强铝合金层板。首先按照组成金属与增强纤维的种类将纤维金属层板的分类进行介绍,并对其历史背景与研究进展进行了回顾。由于各成形方法涉及的变形机理不同,结合成形过程中几何尺寸和工艺参数对FMLs成形性能的影响,对其回弹、起皱、分层和开裂等成形缺陷和成形难点进行了分析。综述了现阶段国内外自成形、冲压成形、喷丸成形、充液成形和激光成形等技术的发展与应用现状,并对每种技术的优缺点及适用零件的类型进行探究。深入讨论了现有成形技术所遇到的挑战,其中重点对充液成形与冲压成形进行介绍。此外,简要介绍了FMLs在成形过程中的变形机理、变形模式和成形质量。在对各方面因素进行全面分析的基础上,讨论了FMLs成形技术未来的发展方向与挑战,此工作对科研人员未来开发新的成形方法具有一定意义。  相似文献   

4.
In the last two decades, the use of advanced composite materials such as Fiber Reinforced Polymers (FRP) in strengthening reinforced concrete (RC) structural elements has been increasing. Research and design guidelines concluded that externally bonded FRP could increase the capacity of RC elements efficiently. However, the linear stress–strain characteristics of FRP up to failure and lack of yield plateau have a negative impact on the overall ductility of the strengthened RC elements. Use of hybrid FRP laminates, which consist of a combination of either carbon and glass fibers, or glass and aramid fibers, changes the behaviour of the material to a non-linear behaviour. This paper aims to study the performance of reinforced concrete beams strengthened by hybrid FRP laminates.

This paper presents an experimental program conducted to study the behaviour of RC beams strengthened with hybrid fiber reinforced polymer (HFRP) laminates. The program consists of a total of twelve T-beams with overall dimensions equal to 460 × 300 × 3250 mm. The beams were tested under cyclic loading up to failure to examine its flexural behaviour. Different reinforcement ratios, fiber directions, locations and combinations of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) laminates were attached to the beams to determine the best strengthening scheme. Different percentages of steel reinforcement were also used. An analytical model based on the stress–strain characteristics of concrete, steel and FRP was adopted. Recommendations and design guidelines of RC beams strengthened by FRP and HFRP laminates are introduced.  相似文献   


5.
Hemp and jute fibre reinforced polyester composites were fabricated to various fibre volume fractions (V f) up to 0.45. Laminates reinforced with a chopped strand mat (CSM) glass fibre were also manufactured. The tensile properties of these materials were evaluated. Fracture toughness was assessed, using linear elastic fracture mechanics (LEFM) principles, under quasi-static loading conditions. At equivalent V f (0.2) it was found that the fracture toughness (K Ic) of the CSM glass fibre reinforced material was approximately 3 times greater than that of the natural fibre reinforced laminates and an order of magnitude greater than the unreinforced polymer alone. Critical strain energy release rates (G c) and plastic zone radii were computed. The G c of the natural fibre reinforced laminates was approximately an order of magnitude lower than that of the CSM reinforced material at the same V f. It was hypothesised that the size of the crack-tip plastic zone influences the energy absorbing capacity of the material. By comparing the relative volumes of the plastic zones, implications regarding the toughening mechanisms operative in natural fibre reinforced composites have been made. The applicability of LEFM to characterise toughness in these materials is discussed.  相似文献   

6.
This paper investigates the through-thickness tensile behavior of woven glass fiber reinforced polymer (GFRP) composite laminates at cryogenic temperatures. Tensile tests were carried out with cross specimens at room temperature and liquid nitrogen temperature (77 K), and the through-thickness elastic and strength properties of the woven GFRP laminates were evaluated. The failure characteristics of the woven GFRP laminates were also studied by optical and laser scanning microscopy observations. A three-dimensional finite element analysis was performed to calculate the stress distributions in the cross specimens, and the failure conditions of the specimens were examined. It is found that the cross specimen is suitable for the cryogenic through-thickness tensile characterization of laminated composite materials. In addition, the through-thickness Young's modulus of the woven GFRP composite laminates is dominated by the properties of the matrix polymer in the given temperature, while the tensile strength is characterized by both, the fiber to matrix interface energy and the cohesion energy of the matrix polymer.  相似文献   

7.
Mechanical and thermal properties of non-crimp glass fiber reinforced clay/epoxy nanocomposites were investigated. Clay/epoxy nanocomposite systems were prepared to use as the matrix material for composite laminates. X-ray diffraction results obtained from natural and modified clays indicated that intergallery spacing of the layered clay increases with surface treatment. Tensile tests indicated that clay loading has minor effect on the tensile properties. Flexural properties of laminates were improved by clay addition due to the improved interface between glass fibers and epoxy. Differential scanning calorimetry (DSC) results showed that the modified clay particles affected the glass transition temperatures (Tg) of the nanocomposites. Incorporation of surface treated clay particles increased the dynamic mechanical properties of nanocomposite laminates. It was found that the flame resistance of composites was improved significantly by clay addition into the epoxy matrix.  相似文献   

8.
This study was aimed at addressing the influence of stamping on the mechanical performance (tensile, in-plane shear and inter-laminar shear) of fabric reinforced thermoplastic laminates under severe conditions. The effects of processing have been discussed at different levels: influence on the micro-structure (porosity and mean free path) and meso-structure (reinforcement and matrix distribution), changes in the matrix properties as well as in the fiber/matrix interface. The obtained results and the SEM observations suggest that these changes are closely associated with the macroscopic mechanical behavior of laminates. Stamping proved to be a re-consolidation process, and the high stamping pressure promotes two primary mechanisms: re-compaction of the fiber network and migration of melted matrix. These mechanisms significantly influence the meso-structure properties (better interlaminar adhesion and fiber/matrix bonding), resulting in the improvement of the material properties.  相似文献   

9.
The purpose of this research is to characterize the cryogenic delamination growth behavior in woven glass fiber reinforced polymer (GFRP) composite laminates subjected to Mode II fatigue loading. Mode II fatigue delamination tests were performed at room temperature, liquid nitrogen temperature (77 K) and liquid helium temperature (4 K) using the four-point bend end-notched flexure (4ENF) test method, and the delamination growth rate data for the woven GFRP laminates were obtained. The energy release rate range was determined by the finite element method. Microscopic examinations of the specimen sections and fracture surfaces were also carried out. The present results are discussed to obtain an understanding of the fatigue delamination growth mechanisms in the woven GFRP laminates under Mode II loading at cryogenic temperatures.  相似文献   

10.
It is an obstacle issue for carbon nanotubes (CNTs) particularly for single-wall carbon nanotubes (SWCNTs) with nano-level dispersion in fiber reinforced polymer matrix composites. In this paper, the dispersing agents such as Volan and BYK-9076 were employed to treat SWCNTs to improve their dispersion in the glass fiber/epoxy (GF/EP) composites. The dispersing results of SWCNTs in composites were observed by scanning electron microscopy (SEM). Then the glass transition temperature (Tg) of these kinds of composites with treated and untreated SWCNTs were obtained by dynamic mechanical thermal analysis (DMTA). Moreover, the flexural tests were performed on these composites. Based on the experiment results, the dispersion of SWCNTs was improved and the flexural property of SWCNTs/GF/EP composite was enhanced too.  相似文献   

11.
采用环状对苯二甲酸丁二醇酯(CBT)预浸料,利用真空袋辅助热压工艺制备了玻璃纤维机织布-碳纤维机织布/聚环状对苯二甲酸丁二醇酯(GF-CF/PCBT)混杂复合材料层合板。利用双悬臂梁(DCB)和三点端部开口弯曲(3ENF)试验对连续纤维增强PCBT复合材料层合板的层间强度做出评估。同时,利用低速冲击试验结合Abaqus/Explicit有限元仿真重点考察了混杂纤维增强PCBT复合材料层合板的低速冲击性能。试验结果表明:尽管CF/PCBT复合材料层合板具有优异的层间性能,当冲击能量为114.3J时,由于CF自身的脆性,CF/PCBT复合材料层合板被完全穿透,而GF-CF/PCBT混杂复合材料层合板只在表面形成凹痕。与纯CF增强PCBT复合材料层合板相比,铺层形式为[CF/GF/CF]25的GF-CF/PCBT混杂复合材料层合板的抗冲击损伤能力提高2倍。仿真得到的云图显示,冲击引起的应力在CF中的分布区域要明显大于在GF中的分布区域。  相似文献   

12.
The cryogenic fatigue delamination behavior of glass fiber reinforced polymer woven laminates under Mode I loading has been investigated experimentally and numerically. Fatigue delamination tests were conducted using double cantilever beam specimens at room temperature, liquid nitrogen temperature (77 K) and liquid helium temperature (4 K). Fracture surface examination using scanning electron microscopy revealed delamination mechanisms under fatigue loading. A finite element analysis was also employed to calculate the J-integral range and damage distributions. The effects of temperature and loading condition on the fatigue delamination growth rates were discussed.  相似文献   

13.
Three-phase glass fiber reinforced composites (GFRP) consisting of traditional woven glass fiber and polyamide-6 (PA6) matrix dispersed with organically modified layered silicates were prepared and investigated in this study. The fabrication of GFRP with different weight percentages of layered silicates was successful when the matrix contains less than 5 wt% of the layered silicates. The improvement due to the high aspect ratio and high stiffness of the layered silicates is illustrated through the matrix-controlled properties of the GFRP. The results showed that the GFRP with 5 wt% layered silicates offer the largest improvement of approximately 30% increase in both flexural strength and compressive strength at elevated temperatures. On the other hand, the in-plane shear properties measured from [±45]s laminates revealed that the layered silicates help improved both the in-plane shear strength and modulus appropriately. By utilizing a nanocomposite matrix, improvement of stiffness and strength, as well as thermal and barrier properties is obtained without any change in processing temperature of the fiber composites.  相似文献   

14.
复合材料结构在疲劳过程中的累积损伤将导致结构刚度下降,并进一步引起结构的动态参数如频率发生衰减。因此,可以将结构疲劳状态与结构频率联系起来,基于频率预测结构的剩余疲劳寿命。本文首先基于复合材料在纵向、横向和面内剪切三个方向的疲劳特性,结合ABAQUS与Umat子程序开发了三维有限元模型模拟复合材料层合板中的疲劳损伤演变,并构建了不同疲劳状态下对应的模态分析模型,由此获得了疲劳过程中的频率衰减曲线。之后,基于疲劳过程的频率变化量训练了人工神经网络,用于预测玻璃纤维增强复合材料层合板的剩余疲劳寿命。特别地,在当前的数值模型中为每个单元分配了符合高斯正态分布的材料属性,以模拟实际情况下复合材料性能的离散性。结果表明,疲劳模型数值模拟结果与已有文献的疲劳实验数据吻合,基于频率变化量训练的人工神经网络可以成功预测玻璃纤维增强复合材料试件的剩余疲劳寿命。   相似文献   

15.
以光导纤维为模型纤维,利用激光干涉法测定了载荷作用下的玻璃纤维增强聚合物复合材料的纤维应力、材料成型时纤维预应力的产生过程及纤维应力随环境温度的变化。实验表明,纤维的应力随界面物质分子特征及界面层结构的不同而不同。其原因是在应力传递过程中,不同界面层具有不同的应力梯度及变形能力。在两相模型中,引入了应力传递系数 k。能形成韧性界面层的ESPCEG 及γ-UPMS 是较好的处理剂。  相似文献   

16.
《Composites Part A》2002,33(5):669-676
Generally, an entire blank is heated in the stamp forming process. Since it will cause difficulty in the transferring process and errors in dimensions and waste more energy, a stamp forming process with locally heated specimen is proposed in this work. Three stamping parameters including working temperature, heated range, and holding time are considered. To evaluate the quality of stamp formed parts, they are macroscopically characterized for part angle actually formed and microscopically examined for delamination and fiber buckling. In addition, the maximum load that the deformed part can suffer is measured. The results indicate that locally heated part is competitive to entirely heated part in maximum load and final angle, even though wrinkles are still observed in locally heated part. Also, 260 °C working temperature, 20 mm heated range, and 1 s holding time are recommended for stamp forming process with locally heated specimen.  相似文献   

17.
This paper investigates the cryogenic fatigue delamination behavior of glass fiber reinforced polymer woven laminates under Mode III loading. Fatigue delamination tests were conducted using split cantilever beam specimens at room temperature, liquid nitrogen temperature (77 K) and liquid helium temperature (4 K). A finite element analysis was also employed to calculate the energy release rate. The temperature dependence of the fatigue delamination growth rate vs. energy release rate range is discussed. Fracture surfaces were examined by scanning electron microscopy to identify the delamination mechanisms under fatigue loading. The important conclusion we reach is that the Mode III fatigue delamination growth rates of woven laminates at cryogenic temperatures are lower than that at room temperature.  相似文献   

18.
Could thermoplastic-based composites be used to replace thermosetting-based composites in high-temperature secondary aircraft structures? The purpose of this work is to establish the ability of a material system to be used in aircraft engine nacelles when subjected to static loadings, with a key upper temperature of 120 °C. In order to provide answers to this question, the thermo-mechanical behaviors of carbon fiber fabric reinforced PPS or epoxy laminates have been compared specifically within the temperature change with 120 °C at the upper bound. The temperature-dependent ductile behavior of laminates is more or less exacerbated, depending on polymers glass transition temperature, and laminates stacking sequence. For both materials, the degree of retention of tensile mechanical properties is quite high in notched and unnotched quasi-isotropic laminates. A Digital Image Correlation technique has been used in order to understand the influence of temperature and matrix ductility on the mechanisms of overstresses accommodation near the hole. In fabric reinforced laminates, the high-temperature results suggest a competition between the mechanisms of damage, and the mechanism of plasticization, enhanced in angle-ply lay-ups. Thus, the highly ductile behavior of TP-based laminates, at temperatures higher than their Tg, is very effective to accommodate the overstresses near the hole.  相似文献   

19.
《Composites Part A》2007,38(6):1621-1629
Hydroxyapatite (HAP) filled ethylene vinyl acetate co-polymer (EVA) composites are developed in an attempt to formulate a surgeon friendly material for renovating impaired skull contours. A cost effective technique for obtaining these composites in the clinically significant forms would indeed be a landmark accomplishment. Stamp forming is one of such processes where the cost as well as the performance of the product strikes the right balance. This study was carried out prior to the stamp forming process optimization of the composites into three-dimensional (3-D) contours, essential for applications like cranioplasty. This paper discusses the V-bending results for HAP filled EVA and an attempt to identify a processing window for real manufacturing situations (3-D forming) is made. The processing conditions, such as the stamping temperature, time, and stamping rate, required to give high-quality right angle bends, have been established. The quality of stamped forms is also examined in terms of shape conformance and variation in wall thickness. It has been found that the stamping temperature and velocity were the key factors, which determined the quality of the stamped part. Too high temperatures as well as too high stamping rates lead to severe thinning and degradation of the formed parts. On the other hand, when the temperatures and the stamping rates are too low, the composites do not conform to the mould contour.  相似文献   

20.
The objective of an on-going DFG research project is to investigate the effect of non-linear stress–strain curves (e.g. τ12γ12) on the fatigue life simulation of carbon fiber reinforced polymer (CFRP) laminates under variable amplitude cyclic loading. Based on the critical element concept of Reifsnider and Stinchcomb appropriate models including a secant modulus iteration for the non-linear stress analysis, the evaluation of inter-fiber fracture effects applying a fracture plane criterion, and appropriate continuum mechanics based stiffness degradation algorithms to treat both inter-fiber cracking and ply delamination were implemented into an existing fatigue life prediction software. Using this software the fatigue life of a quasi-isotropic vinylester/urethane/carbon fiber composite laminate subjected to miniTWIST variable amplitude loading was analyzed and compared to experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号