首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
对含损伤复合材料加筋板进行了强度分析及修补研究。建立了复合材料层合加筋壁板的有限元分析模型,该模型采用界面单元以有效模拟筋条和壁板之间的连接界面及层板分层界面,连接界面和复合材料层板分别采用Quads和Hashin失效准则作为失效判据,引入材料刚度退化模型,采用非线性有限元方法,研究了复合材料加筋壁板在压缩载荷下的破坏过程。建立了筋条脱粘面积、层板分层面积与结构承载能力之间的关系,对不同损伤加筋板进行了修补研究,研究结果可为合理制定复合材料构件缺陷验收标准和结构修理容限提供分析依据。  相似文献   

2.
碳纤维复合材料加筋壁板是飞机结构的典型部件,成型过程中的制造缺陷对其极限承载能力和失效行为具有显著影响,是结构完整性评估的重要内容。通过数值手段开展了3点弯曲载荷作用下含缺陷复合材料加筋壁板的数值分析,重点考虑了缺陷尺寸和位置对结构承载能力的影响。首先基于Abaqus/Standard建立了加筋壁板的三维有限元模型,引入双线性内聚力模型用于描述复合材料加筋壁板的层间失效行为,然后结合文献相关实验数据验证了该模型的有效性,最后基于该有限元模型研究了缺陷尺寸和位置对结构承载能力的影响。结果表明:建立的有限元模型计算结果与文献实验结果吻合;结构的承载能力随着缺陷尺寸的增大而降低,且对蒙皮/桁条界面中部缺陷较为敏感;缺陷的存在导致结构的破坏模式发生转变,但起始裂纹始终发生在界面附近的基体区域。  相似文献   

3.
为分析含脱粘缺陷复合材料夹层结构侧压破坏载荷与破坏模式,采用损伤起始判据和损伤演化准则模拟面板与胶层的损伤及破坏过程,建立了考虑材料失效的三维渐进损伤分析模型。针对两种典型复合材料夹层结构,基于所建立的模型完成了破坏载荷预估和破坏模式分析,并将有限元分析与试验结果进行了对比。结果表明:面板较弱时,中部含圆形脱粘缺陷夹层结构侧压破坏模式通常为材料失效压缩破坏,随着载荷的增加,面板中部及脱粘区域周围发生损伤并沿板宽度方向向两侧扩展,直至材料完全损伤发生破坏;面板较强时,侧压破坏模式通常为整体失稳破坏,屈曲后结构基本不再具有继续承载的能力而迅速发生破坏。分析结果破坏载荷预估值与试验吻合较好,破坏模式与试验结果一致。  相似文献   

4.
基于内聚力模型,采用界面单元模拟筋条和蒙皮之间的粘接界面,建立了复合材料帽型加筋板结构的有限元模型,探究了复合材料帽型加筋板在四点弯曲载荷作用下的界面应力和脱粘失效问题。结果表明,胶层脱粘是复合材料帽型加筋板的主要失效形式,脱粘失效主要受剪应力的影响,脱粘导致加筋板承载能力下降,加剧了整体结构的损伤。  相似文献   

5.
为了研究飞机复合材料T型加筋壁板结构在轴压载荷下的承载能力,对复合材料T型加筋壁板进行了轴压试验,并使用工程算法和有限元法仿真进行了分析,得到了加筋板的屈曲载荷及破坏载荷、载荷-位移曲线及损伤演化过程。对比两种分析方法与试验结果可以得到:当复合材料加筋壁板屈曲后,还有较强的后屈曲承载能力;相对于有限元分析方法,工程算法误差更大;准静态法可以有效地模拟出加筋板的屈曲及后屈曲行为,但是计算代价相对较大。  相似文献   

6.
通过平纹编织碳纤维增韧碳化硅复合材料的拉伸、压缩和剪切的单向与循环加–卸载实验,分别研究了材料在拉伸载荷、压缩载荷和剪切载荷作用下的力学性能和损伤演化过程。结果表明:在压缩载荷作用下,材料的压缩性能下降很小,基体开裂,纤维界面脱粘和纤维束断裂为主要的失效机理;材料在拉伸和剪切载荷作用下,损伤演化过程有所区别。材料拉伸损伤演化经历损伤初始阶段、损伤加速阶段和损伤减缓阶段,为韧性断裂,损伤破坏主要表现为:基体开裂、横向纤维束开裂,界面层脱粘、层间剥离和纤维断裂;在剪切载荷作用下,经历损伤加速阶段和损伤减缓阶段,基体开裂、界面层脱粘和纤维断裂为主要的损伤机理,试样最后在最窄截面位置形成平断面。基于实验研究结果,采用回归分析方法,分别给出了材料在拉伸载荷和剪切载荷作用下损伤演化方程式。  相似文献   

7.
利用ABAQUS有限元程序所建立了一种基于用户子程序USDFLD和Hashin强度准则的复合材料损伤计算模型,用该模型对复合材料加筋层合板在静压痕力作用下主要发生的纤维拉伸破坏、纤维微屈破坏、基体拉伸破坏、基体压缩破坏、层间拉伸破坏、层间压缩破坏这几种基本损伤模式进行分析。对复合材料加筋层合板在静压痕力作用下进行损伤全过程数值研究,利用该有限元模型预测复合材料层合板静压痕力作用下的荷载-位移曲线以及凹坑深度与静压痕力的关系曲线。数值仿真与实验结果吻合较好,表明该损伤模型方法的可行性。复合材料层合板加筋后拐点处的凹坑深度明显加大,达到0.84mm。通过对加筋板的刚度和强度失效规律的分析,为进一步的复合材料格栅加筋结构(如飞机结构中复合材料后压力框)的性能分析提供参考。  相似文献   

8.
对含不同角度槽口的复合材料Ω型加筋壁板受轴向压缩载荷作用下承载强度和失效模式的研究具有重要意义。通过编写VUMAT子程序将选择的三维Hashin失效准则及刚度退化模式加入渐进损伤模型分析中。首先研究0°槽口模型的位移-载荷曲线、面外位移及失效模式,并将结果与实验及已有文献进行对照,验证建立模型的正确性,进一步研究不同角度槽口对加筋壁板的影响。结果表明:具有90°槽口的加筋壁板模型在轴向压缩下的承载能力最强,45°槽口模型承载能力次之,0°槽口模型承载能力最弱。0°槽口模型纤维压缩失效出现在模型的下侧,45°和90°槽口模型均出现在槽口两侧,且三种模型失效均沿与载荷垂直方向扩展。  相似文献   

9.
开展了航空复合材料短柱加筋板的轴向压缩试验。试验件的破坏形式主要包括壁板的撕裂、筋条的断裂和端部的压溃现象,试验过程中,壁板及筋条没有出现明显的脱粘现象。在试验加载初期,载荷-应变曲线呈线性一致的增加趋势,位移测量点的离面位移值基本保持在0 mm附近;当压缩载荷超过临界屈曲载荷时,载荷-应变曲线出现了明显的分岔现象,且离面位移值快速增加。复合材料短柱加筋板失稳后仍然具有后屈曲承载能力,但是该承载能力较小,当短柱加筋板发生失稳后,随着压缩载荷的增加,试验件会很快发生破坏。有限元仿真结果与试验结果较一致,仿真结果表明短柱加筋板主要发生了壁板的局部失稳。  相似文献   

10.
随着航空结构系统的复杂化、多样化与大型化,结构高承载能力与轻量化的需求日益紧迫。复合材料加筋壁板因其比强度高、比模量高以及优异的承载性能,在飞机机翼上下壁板、机身曲板等部段得到了大量的应用。但复合材料易受加工精度影响,材料性能表现出极大的分散性,具有不可忽视的不确定性,即使参数发生微小波动,对结构的承载能力影响都是十分严重的。因此,对复合材料加筋壁板的设计必须考虑不确定性的影响。本文针对复合材料加筋壁板开展不确定性的研究,首先基于正交试验设计对不确定性参数进行显著性分析,然后利用少量、关键参数进行中心组合试验设计,从而构建显著参数与结构响应特性之间的响应面,通过蒙特卡洛模拟获得结构响应特性的分布特征,并与试验对比,确定分析流程的可行性。结果表明:对复合材料加筋壁板屈曲载荷有显著影响的参数主要有:壁板单层厚度、筋条腹板高度、筋条间距以及沿纤维方向弹性模量,在显著性参数服从正态分布下,屈曲特性也服从于正态分布。本文所采用的不确定性分析基本流程对有限元模型修正与复合材料加筋壁板设计具有指导意义。  相似文献   

11.
12.
《Polymer Composites》2017,38(4):646-656
This article investigates the response of composite sandwich panel with Nomex honeycomb core subjected to low‐velocity impact and compression after impact (CAI) by using the methods of experiments and numerical simulations. Low‐velocity impact of sandwich panels at five energy levels is carried out to research the damage resistance and tolerance. A failure model based on Hashin failure criterion is implemented to model the intralaminar damage behavior of laminated plies in the numerical simulation. The cohesive zone model is used to simulate the delamination damage between adjacent laminated plies. The honeycomb core behavior is defined as an elastic–plastic material. Good agreements, in terms of contact‐force histories, damage shapes, and indentation depths of the sandwich panels, are observed between the experimental and numerical results. During CAI analysis, the damaged panels present a phenomenon of quick crack propagation from impact indentation location to each unloaded side after the structural strength reached. It is found that the in‐plane compressive strength of damaged sandwich panels is almost 25–35% reduction than that of undamaged panels. POLYM. COMPOS., 38:646–656, 2017. © 2015 Society of Plastics Engineers  相似文献   

13.
针对泡沫夹层结构箱盖受燃气流冲击问题进行了实验和数值分析。首先根据试验得出箱盖的破坏形式,然后建立了箱盖三维渐进损伤模型,采用该模型揭示了箱盖的层合板、泡沫和胶层的损伤破坏形式,数值仿真结果与实验结果非常吻合,证明该方法的合理性。结果表明箱盖侧边最易发生损伤破坏,其起始损伤由泡沫所引起,胶结界面没有破坏。该模型可以很好预测箱盖损伤起始、损伤扩展和破坏模式。  相似文献   

14.
《Ceramics International》2021,47(20):28821-28836
In this paper, a multi-scale modelling approach has been developed to predict the progressive damage and failure behaviour of 2D woven SiC/SiC composites. At the tow scale, non-linear tow properties have been determined by a micromechanics-based damage model, in which two scalar damage variables were introduced to characterize the fibre-dominated and matrix-dominated damage, respectively. Based on periodic boundary conditions, a meso-scale unit cell model has been established to simulate the macroscopic stress-strain responses and progressive damage processes of the composite under uniaxial tensile, compressive and in-plane shear loadings, respectively. In the numerical method, the non-linear properties of constituent materials have been implemented by the user defined subroutine, USDFLD of the finite element package, Abaqus. The numerical results and their comparisons with experimental stress-strain curves have been presented. The failure mechanisms of the composite under each loading have been also discussed. The high efficiency and prediction accuracy of the model make it possible to analyse large scale woven composites.  相似文献   

15.
In this work, a three-dimensional viscoplasticity formulation with progressive damage is developed and used to investigate the complex time-dependent constituent load transfer and progressive damage behavior in ceramic matrix composites (CMCs) subjected to creep. The viscoplasticity formulation is based on Hill's orthotropic plastic potential, an associative flow rule, and the Norton-Bailey creep power law with Arrhenius temperature dependence. A fracture mechanics-informed isotropic matrix damage model is used to account for CMC brittle matrix damage initiation and propagation, in which two scalar damage variables capture the effects of matrix porosity as well as matrix property degradation due to matrix crack initiation and propagation. The Curtin progressive fiber damage model is utilized to simulate progressive fiber failure. The creep-damage formulation is subsequently implemented as a constitutive model in the generalized method of cells (GMC) micromechanics formulation to simulate time-dependent deformation and material damage under creep loading conditions. The developed framework is used to simulate creep of single fiber SiC/SiC microcomposites. Simulation results are in excellent agreement with experimental and numerical data available in the literature.  相似文献   

16.
Carbon fiber reinforced SiC composite is a kind of promising high-temperature thermal protection structural material owing to the excellent oxidative resistance and superior mechanical properties at high temperatures. In this work, a novel design and fabrication process of lightweight C/SiC corrugated core sandwich panel will be proposed. The compressive and three-point bending of the C/SiC corrugated sandwich panels are conducted by experiment and numerical simulation. The relative density of as-prepared C/SiC sandwich panel and the density composite material are 1.1 and 2.1 g/cm3, respectively. As the density of the C/SiC sandwich panel is only 52.3% of the bulk C/SiC, suggesting that lightweight characteristic is realized. Moreover, the C/SiC sandwich panel manifests itself as linear-elastic behavior before failure in compression and the strength is as high as 15.1 MPa. The failure mode is governed by the core shear failure and panel interlayer cracking. The load capacity under the three-point bending C/SiC composite sandwich panel is 1947.0 N. The main failure behavior is core shear failure. The stress distribution under the compression and three-point bend was simulated by FE analysis, and the results of numerical simulations are in accordance with the experimental results.  相似文献   

17.
《Ceramics International》2022,48(5):6574-6590
Results from fatigue experiments done on a SiC/SiC composite are presented. A micromechanics-based model is used to study the observed behavior under cyclic loading. The model includes consideration of progressive damage, creep and oxidation of the fiber and matrix. Comparison of model predictions with test data showed that the deformation during fatigue in this material is explained primarily by damage in the form of matrix microcracking and interface debonding, in combination with creep under the cyclic load. Stiffness of the material was observed to not change significantly during fatigue indicating that the contribution of fiber fracture to deformation is limited. Fiber fracture however was found to determine final failure of the composite. Failure under cyclic fatigue loading was found to be affected by load transfer from the matrix to the fiber due to damage and creep, and by progressive degradation of the load-carrying fibers due to the combined effect of oxidation and load cycling.  相似文献   

18.
This paper investigates the effects of foam core density and aluminum skin plates on the low speed impact behaviour of adhesively bonded sandwich T-joints having a PVC foam core and aluminum face-sheets. The dynamic response of adhesively bonded sandwich T-joints was analyzed by the explicit finite element method. Two different material models were implemented to the foam core material: a hyperelastic model and a crushable foam material with ductile damage whereas the aluminum face-sheets were modelled as an elasto-plastic material. The cohesive response of adhesive interfaces was included using three dimensional cohesive element based on cohesive zone model. Adhesively bonded sandwich T-joint specimens were manufactured and tested to validate the numerical model. A very good agreement between the experimental and FE results were achieved. The density of the foam core material of adhesively bonded sandwich T-joint played important role on the joint failure mechanism. The joint having a stiffer foam core experienced more damage in both stiffener panel and adhesive layers.  相似文献   

19.
《Ceramics International》2022,48(3):3109-3124
Due to the mismatch of the thermal expansion coefficients between the matrix and yarns, thermal residual stress will appear in C/SiC composites. In this paper, a progressive damage model was used to predict the thermal-mechanical behavior of C/SiC composites and reveal the failure mechanism. Firstly, the properties of the composites under tensile load were tested at three different temperatures in vacuum. Then, the elastic-plastic progressive damage constitutive laws were used and implemented by a user-defined subroutine UMAT in ABAQUS. The thermal residual stress evolution in the cooling and heating processes was characterized. Finally, the stress-strain curves of the composites under tensile load at different temperatures were studied. The effects of thermal residual stress on the tensile properties and progressive damage process of C/SiC composites were revealed sequentially. This work can give design guidance for strengthening of C/SiC composites.  相似文献   

20.
Experimental tests and numerical simulations were implemented to investigate the interlaminar shear properties of carbon/carbon composites (C/Cs). A unit‐cell model, according to the microstructure of the C/Cs, was used to predict material properties of the C/Cs. A three‐dimensional finite element model was established to investigate the damage behavior of C/Cs on the basis of Linde failure criterion and damage evolution. Good agreement, in terms of the load force history and failure modes, was observed between the experimental and numerical results; this provided the applicability of the numerical simulation. The test results show that the interlaminar shear strength of the C/Cs was 10.52 MPa and the value of the simulation result was 10.89 MPa, with the relative error being less than 4%. Damage contours and stress distribution analysis of the simulation results are discussed. Fiber damage occurred at the bottom of the specimen, and matrix damage was found in the upper half of the specimen; this was similar to the appearance of the tested specimens. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44783.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号