首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
The aims of this study were to propose multiply scale factors for evaluation of discomfort of standing persons and to investigate whether there exist differences between multiplying factors used for evaluation of discomfort of standing persons and those of seated persons exposed to WBV. Twelve male subjects were exposed to twenty-seven stimuli that comprise three acceleration magnitudes (0.2, 0.4, and 0.8 m/s2 r.m.s.) along fore-aft (x), lateral (y) or vertical (z) direction. The subjects with seated or standing posture on the platform of the vibration test rig rated the subjective discomfort for each stimulus that has frequency contents ranging from 1.0 Hz to 20 Hz with a constant power spectrum density. The order of presentation of the test stimuli was fully randomized and each stimulus was repeated three times. The subjective scale for discomfort was calculated by using the category judgment method. The best combinations of multiplying factors were determined by calculating correlation coefficients of regression curves in-between subjective ratings and vibration magnitudes. In all the directions, body posture significantly influenced on subjective discomfort scales. Particularly in the fore-aft and lateral direction, the upper limit of all the categories for the standing posture resulted in higher vibration acceleration magnitudes than those for the seated posture. In contrast, in the vertical direction, only the upper limit of category “1: Not uncomfortable” for standing posture was observed to be higher than that for seated posture. The best agreement for ISO-weighted vibration acceleration occurred at x factor of 1.8 and y factor of 1.8 in the standing posture and x factor of 2.8 and y factor of 1.8 in the seated posture. The results suggest that seated people respond more sensitively and severely in perception of discomfort to fore-aft and lateral vibration than standing people do while standing people respond more sensitively and severely to vertical vibration than seated people do. Thus the effects of body postures on multiplying factors should be considered in evaluation of discomfort caused by whole-body vibration.Relevance to industryThis study reports differences in subjective response of standing persons to fore-aft, lateral and vertical whole-body vibration. The results obtained in this study propose the fundamental data on the sensitivity to whole-body vibration exposed with standing posture.  相似文献   

2.
This paper presents a micro electromagnetic energy harvester which can convert low level vibration energy to electrical power. It mainly consists of an electroplated copper planar spring, a permanent magnet and a copper planar coil with high aspect ratio. Mechanical simulation shows that the natural frequency of the magnet-spring system is 94.5 Hz. The resonant vibration amplitude of the magnet is 259.1 μm when the input vibration amplitude is 14 μm and the magnet-spring system is at resonance. Electromagnetic simulation shows that the linewidth and the turns of the coil influence the induced voltage greatly. The optimized electromagnetic vibration energy harvester can generate 0.7 μW of maximal output power with peak–peak voltage of 42.6 mV in an input vibration frequency of 94.5 Hz and input acceleration of 4.94 m/s2 (this vibration is a kind of low level ambient vibration). A prototype (not optimized) has been fabricated using MEMS micromachining technology. The testing results show that the prototype can generate induced voltage (peak–peak) of 18 mV and output power of 0.61 μW for 14.9 m/s2 external acceleration at its resonant frequency of 55 Hz (this vibration is not in a low ambient vibration level).  相似文献   

3.
The discomfort caused by lateral oscillation, roll oscillation, and fully roll-compensated lateral oscillation has been investigated at frequencies between 0.25 and 1.0 Hz when sitting on a rigid seat and when sitting on a compliant cushion, both without a backrest. Judgements of vibration discomfort and the transmission of lateral and roll oscillation through the seat cushion were obtained with 20 subjects. Relative to the rigid seat, the cushion increased lateral acceleration and roll oscillation at the lower frequencies and also increased discomfort during lateral oscillation (at frequencies less than 0.63 Hz), roll oscillation (at frequencies less than 0.4 Hz), and fully roll-compensated lateral oscillation (at frequencies between 0.315 and 0.5 Hz). The root-sums-of-squares of the frequency-weighted lateral and roll acceleration at the seat surface predicted the greater vibration discomfort when sitting on the cushion. The frequency-dependence of the predicted discomfort may be improved by adjusting the frequency weighting for roll acceleration at frequencies between 0.25 and 1.0 Hz.  相似文献   

4.
The objective of this study is to enhance the understanding of the vibration transmission in the hand-arm system in three orthogonal directions (X, Y, and Z). For the first time, the transmitted vibrations distributed on the entire hand-arm system exposed in the three orthogonal directions via a 3-D vibration test system were measured using a 3-D laser vibrometer. Seven adult male subjects participated in the experiment. This study confirms that the vibration transmissibility generally decreased with the increase in distance from the hand and it varied with the vibration direction. Specifically, to the upper arm and shoulder, only moderate vibration transmission was measured in the test frequency range (16 to 500 Hz), and virtually no transmission was measured in the frequency range higher than 50 Hz. The resonance vibration on the forearm was primarily in the range of 16–30 Hz with the peak amplitude of approximately 1.5 times of the input vibration amplitude. The major resonance on the dorsal surfaces of the hand and wrist occurred at around 30–40 Hz and, in the Y direction, with peak amplitude of more than 2.5 times of the input amplitude. At higher than 50 Hz, vibration transmission was effectively limited to the hand and fingers. A major finger resonance was observed at around 100 Hz in the X and Y directions and around 200 Hz in the Z direction. In the fingers, the resonance magnitude in the Z direction was generally the lowest, and the resonance magnitude in the Y direction was generally the highest with the resonance amplitude of 3 times the input vibration, which was similar to the transmissibility at the wrist and hand dorsum. The implications of the results are discussed.Relevance to industryProlonged, intensive exposure to hand-transmitted vibration could result in hand-arm vibration syndrome. While the syndrome's precise mechanisms remain unclear, the characterization of the vibration transmissibility of the system in the three orthogonal dimensions performed in this study can help understand the syndrome and help develop improved frequency weightings for assessing the risk of the exposure for developing various components of the syndrome.  相似文献   

5.
The extent to which a seat can provide useful attenuation of vehicle vibration depends on three factors: the characteristics of the vehicle motion, the vibration transmissibility of the seat, and the sensitivity of the body to vibration. The ‘seat effective amplitude transmissibility’ (i.e., SEAT value) reflects how these three factors vary with the frequency and the direction of vibration so as to predict the vibration isolation efficiency of a seat. The SEAT value is mostly used to select seat cushions or seat suspensions based on the transmission of vertical vibration to the principal supporting surface of a seat. This study investigated the accuracy of SEAT values in predicting how seats with backrests influence the discomfort caused by multiple-input vibration. Twelve male subjects participated in a four-part experiment to determine equivalent comfort contours, the relative discomfort, the location of discomfort, and seat transmissibility with three foam seats and a rigid reference seat at 14 frequencies of vibration in the range 1–20 Hz at magnitudes of vibration from 0.2 to 1.6 ms−2 r.m.s. The ‘measured seat dynamic discomfort’ (MSDD) was calculated for each foam seat from the ratio of the vibration acceleration required to cause similar discomfort with the foam seat and with the rigid reference seat. Using the frequency weightings in current standards, the SEAT values of each seat were calculated from the ratio of overall ride values with the foam seat to the overall ride values with the rigid reference seat, and compared to the corresponding MSDD at each frequency. The SEAT values provided good predictions of how the foam seats increased vibration discomfort at frequencies around the 4-Hz resonance but reduced vibration discomfort at frequencies greater than about 6.3 Hz, with discrepancies explained by a known limitation of the frequency weightings.  相似文献   

6.
In this paper, a new S-shaped piezoelectric PZT cantilever is microfabricated for scavenging vibration energy at low frequencies (<30 Hz) and low accelerations (<0.4g). The maximum voltage and normalized power are 42 mV and 0.31 μW g −2, respectively, at input acceleration of 0.06g. For acceleration above 0.06g, the vibration of PZT cantilever changes from a linear oscillation to a nonlinear impact oscillation due to the displacement constraint introduced by a mechanical stopper. Based on theoretical modeling and experimental results, the frequency broadening effect of the PZT cantilever is studied with varying stop distances and input accelerations. The operation bandwidth of the piezoelectric PZT cantilever is able to extend from 3.4 to 11.1 Hz as the stop distance reduces from 1.7 to 0.7 mm for an acceleration of 0.3g, at the expense of the voltage and normalized power at resonance decreasing from 40 to 16 mV and from 17.8 to 2.8 nW g−2, respectively.  相似文献   

7.
Exposure to high frequency (kHz) vibration from impact power tools is overlooked in the ISO 5349-1 risk prediction for acquiring Hand Arm Vibration Syndrome. The biological effects of high frequency, power tool vibration have not been adequately studied. We characterized the magnitude and transmissibility of riveting hammer vibration in a rat tail model using a light weight piezoelectric sensor. The performance of the newly-introduced piezoelectric sensor was validated by showing its similarities to the previously published laser vibrometer. ISO 5349-1 frequency weighting revealed major risk from the 35 Hz component of the riveting hammer vibration, whereas the weighted values of the kHz components were not calculated to reach exposure action value in 24 h– However, the unweighted acceleration magnitudes at 12.4 and 16.3 kHz were about 10 and 50 times larger than the unweighted acceleration peak observed at 35 Hz. A transmissibility of <1 was calculated for 12.4 and 16.3 kHz, indicating tissue absorbance, while 35 Hz exhibited a transmissibility of 9.05, suggesting tissue resonance. The largest absolute change in acceleration was at 12.4 and 16.3 kHz, implicating that a considerable amount of high frequency vibration energy was absorbed by the tissue. A progressive reduction in intact sensory nerve endings was observed in the tissue when increasing vibration exposure from 1 min to 12 min.  相似文献   

8.
This study examined how the apparent mass and transmissibility of the human body depend on the magnitude of fore-and-aft vibration excitation and the presence of vertical vibration. Fore-and-aft and vertical acceleration at five locations along the spine, and pitch acceleration at the pelvis, were measured in 12 seated male subjects during fore-and-aft random vibration excitation (0.25–20 Hz) at three vibration magnitudes (0.25, 0.5 and 1.0 ms−2 r.m.s.). With the greatest magnitude of fore-and-aft excitation, vertical vibration was added at 0.25, 0.5, or 1.0 ms−2 r.m.s. Forces in the fore-and-aft and vertical directions on the seat surface were measured to calculate apparent masses. Transmissibilities and apparent masses during fore-and-aft excitation showed a principal resonance around 1 Hz and a secondary resonance around 2–3 Hz. Increasing the magnitude of fore-and-aft excitation, or adding vertical excitation, decreased the magnitudes of the resonances. At the primary resonance frequency, the dominant mode induced by fore-and-aft excitation involved bending of the lumbar spine and the lower thoracic spine with shear deformation of tissues at the ischial tuberosities. The relative contributions to this mode from each body segment (especially the pelvis and the lower thoracic spine) varied with vibration magnitude. The nonlinearities in the apparent mass and transmissibility during dual-axis excitation indicate coupling between the principal mode of the seated human body excited by fore-and-aft excitation and the cross-axis influence of vertical excitation.Relevance to industryUnderstanding movements of the body during exposure to whole-body vibration can assist the optimisation of seating dynamics and help to control the effects of the vibration on human comfort, performance, and health. This study suggests cross-axis nonlinearity in biodynamic responses to vibration should be considered when optimising vibration environments.  相似文献   

9.
Vibration feedback is one of the most popular ways to communicate between human and haptic interfaces nowadays. In order to deliver a wider variety of information accurately and efficiently, significant design factors of the vibration need to be investigated and applied to haptic devices. In this study, the excitatory direction was examined as a design factor of the vibration in terms of sensitivity and emotion. We conducted two experiments. In the first experiment, the sensitivities of three excitatory directions—X (lateral), Y (fore-and-aft) and Z (vertical) axes were estimated by the absolute thresholds of the vibration perception with two frequency levels (150 and 280 Hz). Based on ten participants’ estimated absolute thresholds, we conclude that the vibration with X axis is less sensitive than Z axis at the frequency of 150 Hz, while the vibration with Y axis is less sensitive than Z axis at the frequency of 280 Hz. In the second experiment, the agreeability of 29 emotional expressions to the vibrations was measured by a 7-point scale with a total of 12 conditions (2 frequencies × 2 amplitudes (i.e., 50 × 10−3 and 500 × 10−3 g) × 3 excitatory directions). Based on 20 participants’ responses, it is concluded that at the frequency of 150 Hz and the amplitude of 50 × 10−3 g, the vibration is perceived as ‘light’, and as even ‘lighter’ if the vibration is with Y axis rather than with Z axis. Likewise, at the frequency of 150 Hz and the amplitude of 500 × 10−3 g, the vibration is perceived as ‘repulsive’, and as even ‘more repulsive’ if the vibration is with Y or Z axis rather than with X axis. Therefore, three excitatory directions can be selectively utilized to design the distinguishable vibration by its sensitivity and emotion.  相似文献   

10.
Agricultural tractor drivers are subjected to high levels of whole-body vibrations and hand arm vibrations during most part of the farm activities due to unevenness of field surface, uneasy posture, improper workplace design, moving parts of the tractor, and other unavoidable circumstances. The comfort level of the operator inside a dynamic tractor is dependent on the level of vibration generated inside the different human body segments. In the present study, a finite element modeling was proposed to predict vertical vibrations (Z-axis) and frequencies at the different body segments of the seated small tractor operator. The forces required for different controls of the tractor were measured to be used as input parameters in the finite element modeling. The maximum mean forces of the brake (172.8 N) and clutch (153.2 N) were used as the input parameters for the simulation study. The simulated results were validated with the field measured values of vertical accelerations at selected body segments of the operator. The simulation could successfully predict vertical vibrations at selected points of interest (i.e., foot, leg, thigh, lower arm, upper arm, back, and head) except the chest of the body, as the buttock of the operator model was fixed (degree of freedom is equal to zero) in the simulation. The obtained results were compared with the international standards ISO 2631-1 (1985/1997) and ISO 5349-1 (2001) to assess the vibration characteristics at the different body segments of the operator. The foot, leg, lower arm, and upper arm of the operator were subjected to vertical vibration frequencies from 10 to 200 Hz. Most of the resonance of vertical accelerations occurred in one-third octave bands of 20–80 Hz frequencies. The thigh, chest, back, and head of the operator were exposed to vibration frequencies below 40 Hz during field operation. At these parts of the body, the vertical acceleration resonated at lower frequencies, between 2 and 8 Hz.  相似文献   

11.
On active acceleration control of vibration isolation systems   总被引:1,自引:0,他引:1  
Active vibration isolation systems (VIS) have been widely used from the space shuttle applications to the ground vehicle suspensions. The main control objective is to achieve the minimum vibrations at the flotor for given vibrations at the stator. With respect to a fundamental limitation of using the PD type flotor acceleration controller, an I (integral) and II (double integral) type flotor acceleration controller is proposed in this paper. By incorporating the feedforward compensation of the umbilical dynamics, the proposed acceleration controller is able to experimentally push down the lowest isolation frequency from 1.4 Hz (when PID control is used) to 0.03 Hz with a sufficiently improved vibration isolation performance up to 10 Hz, with respect to a MIM (Microgravity Vibration Isolation Mount) system tested on the ground. A unique frequency selective filter (FSF) is also proposed, which experimentally suppresses a fixed-frequency umbilical resonant mode at 22.2 Hz with an attenuation of 20 dB.  相似文献   

12.
The efficiency of suspension seat can be influenced by several factors such as the input vibration, the dynamic characteristics of the seat and the dynamic characteristics of the human body. The objective of this paper is to study the effect of sitting postures and vibration magnitude on the vibration transmissibility of a suspension system of an agricultural tractor seat. Eleven (11) healthy male subjects participated in the study. All subjects were asked to sit on the suspension system. Four (4) different sitting postures were investigated – i) “relax”, ii) “slouch”, iii) “tense”, and iv) “with backrest support”. All subjects were exposed to random vertical vibration in the range of 1–20 Hz, at three vibration magnitudes - 0.5, 1.0 and 2.0 m/s2 r.m.s for 60 s. The results showed that there were three pronounced peaks in the seat transmissibility, with the primary resonance was found at 1.75–2.5 Hz for every sitting postures. The “backrest” condition had the highest transmissibility resonance (1.46), while the “slouch” posture had the highest Seat Effective Amplitude Transmissibility (SEAT) values (64.7%). Changes in vibration magnitude for “relax” posture from 0.5 to 2.0 m/s2 r.m.s resulted in greater reduction in the primary resonance frequency of seat transmissibility. The SEAT values decreased with increased vibration magnitude. It can be suggested that variations in posture and vibration magnitude affected the vibration transmission through the suspension system, indicating the non-linear effect on the interaction between the human body and the suspension system.Relevance to industry: Investigating the posture adopted during agricultural activities, and the effects of various magnitudes of vibration on the suspension system's performance are beneficial to the industry. The findings regarding their influence on the human body may be used to optimize the suspension system's performance.  相似文献   

13.
《Ergonomics》2012,55(5):833-855
Operation of vibrating power hand tools can result in excessive grip force, which may increase the risk of cumulative trauma disorders in the upper extremities. An experiment was performed to study grip force exerted by 14 subjects operating a simulated hand tool vibrating at 9.8 m/s2 and 49 m/s2 acceleration magnitudes, at 40 Hz and 160 Hz frequencies, with vibration delivered in three orthogonal directions, and with 1.5kg and 3.0kg load weights. Average grip force increased from 25.3 N without vibration to 32.1 N (27%) for vibration at 40 Hz, and to 27.1N (7%) for vibration at 160 Hz. Average grip force also increased from 27.4 N at 9.8 m/s2 acceleration to 31.8 N (16%) at 49m/s2. Significant interactions between acceleration x frequency, and frequency x direction were also found. The largest average grip force increase was from 25.3N without vibration to 35.8N (42%) for 40 Hz and 49 m/s2 vibration. The magnitude of this increase was of the same order as for a two-fold increase in load weight, where average grip force increased from 22.5N to 35.0N (56%). A second experiment studied hand flexor and extensor muscle responses using electromyography for five subjects holding a handle vibrating at 8 m/s2 using ISO weighted acceleration, with frequencies of 20 Hz, 40 Hz, 80 Hz and 160 Hz, and grip forces of 5%, 10% and 15% of maximum voluntary contraction. Muscle responses were greatest at frequencies where grip force was affected, indicating that the tonic vibration reflex was the likely cause of increased grip exertions.  相似文献   

14.
The transmission of vibration from hand-held tools via work gloves and into the operators' hands can be affected by several factors such as glove material properties, tool vibration conditions, grip force, and temperature. The primary aim of this study is to develop a new methodology to measure and evaluate vibration transmissibility for a human finger in contact with different materials, whilst measuring and controlling the grip force. The study presented here used a new bespoke lab-based apparatus for assessing vibration transmissibility that includes a generic handle instrumented for vibration and grip force measurements. The handle is freely suspended and can be excited at a range of real-world vibration conditions whilst being gripped by a human subject. The study conducted a frequency response function (FRF) of the handle using an instrumented hammer to ensure that the handle system was resonance free at the important frequency range for glove research, as outlined in ISO 10819: 1996: 2013, and also investigated how glove material properties and design affect the tool vibration transmission into the index finger (Almagirby et al. 2015). The FRF results obtained at each of six positions shows that the dynamic system of the handle has three resonance frequencies in the low frequency range (2, 11 and 17 Hz) and indicated that no resonances were displayed up to a frequency of about 550 Hz. No significant vibration attenuation was shown at frequencies lower than 150 Hz. The two materials cut from the gloves that were labelled as anti-vibration gloves (AV) indicated resonance at frequencies of 150 and 160 Hz. However, the non-glove material that did not meet the requirements for AV gloves showed resonance at 250 Hz. The attenuation for the three materials was found at frequencies of 315 Hz and 400 Hz. The level and position of the true resonance frequencies were found to vary between samples and individual subjects.  相似文献   

15.
《Ergonomics》2012,55(8):705-719
The effects on discomfort of the frequency and direction of the translational vibration of a footrest and flat firm backrest have been studied in two experiments. At frequencies in the range 2.5-63 Hz, the first experiment determined the levels of fore-and-aft, lateral and vertical vibration of the feet of seated subjects which caused them discomfort equivalent to that from 0.8 m/s2 r.m.s. 10 Hz vertical vibration of a firm flat seat. The levels of fore-and-aft, lateral and vertical vibration at the back of a seat which were equivalent to 0.8 m/s2 r.m.s. 10 Hz vertical seat vibration were determined in the second experiment. The vibration of the feet or back occurred without simultaneous vibration at the seat.

Individual and group equivalent comfort contours are presented. It is concluded that the data provide a useful initial indication of the relative contribution of foot and back vibration to discomfort. Equivalent comfort contours for foot vibration were similar for all three directions of vibration. The contours for vibration of the back show a high sensitivity to fore-and-aft vibration. The results obtained from two additional studies show that vibration from a backrest and other variations in seating conditions can influence subject comfort.  相似文献   

16.
Many studies in backpack design have been focused on reducing trunk muscle activity and improving overall comfort while the wearers (college students and outdoor enthusiasts) were walking. However, little work has done on combining the vibration with harness system design. The purpose of the present study was to evaluate the effect of the vibration backpack harness system on trunk muscle activity and overall comfort in walking. There were four vibrators sewn in the four different positions of our harness system. Subjects were asked to support a load (20% body weight) on their backpack while performing 5-min walking trials on the treadmill (speed = 1.6 m/s) with different frequencies of vibration (0 Hz, 28 Hz, 35 Hz, 42 Hz). The objective measures of trunk muscle activity (electromyography) were obtained during the walking task. Subjects also were asked to complete subjective ratings of comfort. The results of the objective measures in this study had shown that the vibration function had a positive effect on reducing muscle activity for upper trapezius (UT), but not for erector spinae (ES). From the data of the two subjective surveys in our study, the comfort level of no-vibration state (0 Hz) was worse than vibration state (28 Hz, 35 Hz, 42 Hz) for both muscles, and when the frequency was 35 Hz, the comfort of the harness system was higher than the other three frequencies. The findings of the present study support that backpack with low frequency vibration has a positive effect on reducing trunk muscle activity and improving overall comfort level for wearers in walking.Relevance to industryObservations of present study is beneficial in assisting wearers to reduce muscle activity and improve overall comfort in walking according to the vibration backpack harness system. New backpack design criteria for harness systems are discussed to optimize production strategies. The wearers could be students, outdoor enthusiasts and old people.  相似文献   

17.
Although much research has been devoted to the determination of equivalent comfort contours for human response to whole-body vibration little consideration has been given to the source of the feelings that give rise to such comfort contours. This paper shows that for vertical vibration there is a distinct difference in the locations of discomfort on the body at different frequencies and that the locations are not much affected by the vibration level. For horizontal motions, feelings of discomfort predominated in the lower abdomen and buttocks irrespective of vibration frequency or direction. A semantic scaling technique indicates the maximum sensitivity to vertical vibration acceleration in the 4 to 16 Hz range, but for both fore-and aft and lateral vibration there is a decrease in sensitivity with increasing frequency above 2Hz.  相似文献   

18.
In a railway vehicle, the vibrations are transmitted to the passengers through the various interfaces such as floor, seat, backrest etc. These vibrations affect the passenger comfort as well as their performance to do any work such as reading, writing, typing etc. In the present work, effects of vibration magnitude, direction of vibration, postures and reading formats have been studied on the reading activity. Thirty healthy male subjects have performed reading task, one at a time. All subjects were exposed to uni-axial whole body vibration in 1–20 Hz frequency range at 0.5, 1 and 1.5 m/s2 rms vibration magnitude. The experimental task involved reading a paragraph under the different 54 experimental conditions (three magnitude, three direction, two posture and three reading format). The task performance has been evaluated in terms of time taken by the subjects to read a given paragraph and also the subjective evaluation of perceived difficulty on Borg's CR 10 scale. Perceived difficulty and performance degradation in reading have been found to increase with the increase in vibration magnitude in each direction of vibration. The perceived difficulty and performance degradation in reading have been observed to be higher in the fore-&-aft direction in with-backrest posture. In vertical and lateral vibration, perceived difficulty and performance degradation have been higher in without-backrest posture compare to with-backrest posture. The perceived difficulty and performance degradation have been lower for the triple-column format.  相似文献   

19.
A novel non-resonant energy harvesting mechanism with wide operation frequency band is investigated for collecting energy from low frequency ambient vibration. A free-standing magnet is packaged inside a sealed hole which is created by stacking five pieces of printed circuit board substrates embedded with multi-layer copper coils. This device was tested under various acceleration conditions. Considering the air damping effect, two types of device structures with different covered plates are investigated. For type I, one covered acrylic plate with drilled air holes and another plate with no holes are used to package the moving magnet. For type II, the middle hole is sealed by two acrylic plates with drilled air holes. The output voltage of type II is better than the one of type I at the same acceleration. When the energy harvester of type II is shook at 1.9 g acceleration along longitudinal direction of the hole, the 9 mV output voltage with 40 Hz bandwidth, i.e., from 40 to 80 Hz, is generated. The maximum output power within the ranges of 40–80 Hz, i.e., operation bandwidth, is measured as 0.4 μW under matched loading resistance of 50 Ω. Experimental results show that type I device has wider frequency bandwidth, higher center frequency and smaller output voltage than type II device because type I device experiences severe damping influence.  相似文献   

20.
《Ergonomics》2012,55(7):631-650
This second paper in a series of studies of the discomfort produced by multi-axis vibration is concerned with rotational seat vibration. The effects of level, frequency and direction of the roll, pitch and yaw vibration of a firm flat seat have been studied in two experiments. At octave centre frequencies in the range 1-31.5 Hz the first experiment determined the levels of roll, pitch and yaw seat vibration which caused discomfort equivalent to 0-5 and l.25m/s2r.m.s. 10 Hz vertical seat vibration. In the second experiment, comfort contours equivalent to 0.8 m/s2 r.m.s. 10 Hz vertical seat vibration were determined from 18 males and 18 females at preferred third-octave centre frequencies from 1 to 31.5 Hz. In all cases the axis of rotation passed through the centre of the seat surface. There was no vibration of the feet and no backrest.

It was concluded that the shape of equivalent comfort contours need not normally depend on vibration, level. Both individual and group equivalent comfort contours are presented. Although there were significant correlations between subject size and subject relative discomfort it is not thought that these correlations have much practical application. In all three axes the median contours of vibration acceleration increase in proportion to vibration frequency. Sensitivity is greatest for roll vibration and least for yaw vibration of the seat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号