首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
PURPOSE: To study the effects of recombinant human protein disulfide isomerase (rhPDI) concentration, reduced glutathione:oxidized glutathione ratio (GSH:GSSG) and temperature on the efficiency of oxidative folding of a model protein, recombinant human interleukin 2 (C125A mutation) (C125A rhIL-2). METHODS: C 125A rhIL-2 inclusion bodies were reduced and denatured by guanidium hydrochloride (Gdm.Cl) and 100 mM GSH. The solution was diluted 10 times into folding buffer, allowing C125A rhIL-2 to fold either in the absence or presence of rhPDI. The renatured and unfolded C125A rhIL-2 species were quantitated by reversed phase-HPLC. RESULTS: The initial folding rate of C125A rhIL-2 linearly increased with rhPDI:C125A rhIL-2 molar ratio in the first 2.5 minutes, and reached the highest rate when the rhPDI:C125A rhIL-2 ratio was 1:1. The oxidative folding of C125A rhIL-2 linearly increased as the GSH:GSSG molar ratio decreased from 10:0 to 10:3. The folding of C125A rhIL-2 was also dependent on temperature, and optimum folding was realized at 23 degrees C. CONCLUSIONS: These results demonstrate that under optimal redox potential and temperature, rhPDI enhances the oxidative folding of C125A rhIL-2. In the oxidative folding of C125A rhIL-2, rhPDI exerts its effect on folding by the acceleration of thiol/disulfide interchange.  相似文献   

2.
3.
4.
We have analyzed the effects of different components of the GroE chaperonin system on protein folding by using a nonpermissive substrate (i.e., one that has very low spontaneous refolding yield) for which rate data can be acquired. In the absence of GroES and nucleotides, the rate of GroEL-mediated refolding of heat- and DTT-denatured mitochondrial malate dehydrogenase was extremely low, but some three times higher than the spontaneous rate. This GroEL-mediated rate was increased 17-fold by saturating concentrations of ATP, 11-fold by ADP and GroES, and 465-fold by ATP and GroES. Optimal refolding activity was observed when the dissociation of GroES from the chaperonin complex was dramatically reduced. Although GroEL minichaperones were able to bind denatured mitochondrial malate dehydrogenase, they were ineffective in enhancing the refolding rate. The spectrum of mechanisms for GroE-mediated protein folding depends on the nature of the substrate. The minimal mechanism for permissive substrates (i.e., having significant yields of spontaneous refolding), requires only binding to the apical domain of GroEL. Slow folding rates of nonpermissive substrates are limited by the transitions between high- and low-affinity states of GroEL alone. The optimal mechanism, which requires holoGroEL, physiological amounts of GroES, and ATP hydrolysis, is necessary for the chaperonin-mediated folding of nonpermissive substrates at physiologically relevant rates under conditions in which retention of bound GroES prevents the premature release of aggregation-prone folding intermediates from the chaperonin complex. The different mechanisms are described in terms of the structural features of mini- and holo-chaperones.  相似文献   

5.
6.
Autosomal dominant polycystic kidney disease (ADPKD) is one of the most frequent genetically transmitted disorders among Europeans with an attributed frequency of 0.1%. The two most common genetic determinants for ADPKD are the PKD1 and PKD2 genes. In this study we report the genomic structure and pattern of expression of the Pkd2 gene, the murine homolog of the human PKD2 gene. Pkd2 is localized on mouse Chromosome (Chr) 5 proximal to anchor marker D5Mit175, spans at least 35 kb of the mouse genome, and consists of 15 exons. Its translation product consists of 966 amino acids, and the peptide shows a 95% homology to human polycystin2. Functional domains are particularly well conserved in the mouse homolog. The expression of mouse polycystin2 in the developing embryo at day 12.5 post conception is localized in mesenchymally derived structures. In the adult mouse, the protein is mostly expressed in kidney, which suggests its functional relevance for this organ.  相似文献   

7.
8.
We consider the problem of determining the three-dimensional folding of a protein given its one-dimensional amino acid sequence. We use the HP model for protein folding proposed by Dill (1985), which models protein as a chain of amino acid residues that are either hydrophobic or polar, and hydrophobic interactions are the dominant initial driving force for the protein folding. Hart and Istrail (1996a) gave approximation algorithms for folding proteins on the cubic lattice under the HP model. In this paper, we examine the choice of a lattice by considering its algorithmic and geometric implications and argue that the triangular lattice is a more reasonable choice. We present a set of folding rules for a triangular lattice and analyze the approximation ratio they achieve. In addition, we introduce a generalization of the HP model to account for residues having different levels of hydrophobicity. After describing the biological foundation for this generalization, we show that in the new model we are able to achieve similar constant factor approximation guarantees on the triangular lattice as were achieved in the standard HP model. While the structures derived from our folding rules are probably still far from biological reality, we hope that having a set of folding rules with different properties will yield more interesting folds when combined.  相似文献   

9.
We investigated the role of a partially folded intermediate that transiently accumulates during lysozyme folding. Previous studies had shown that the partially folded intermediate is located on a slow-folding pathway and that an additional fast direct pathway from the unfolded state to the native state exists. Kinetic double-jump experiments showed that the two folding pathways are not caused by slow equilibration reactions in the unfolded state. Rather, kinetic partitioning occurs very early in lysozyme refolding, giving the molecules the chance to enter the direct pathway or a slow-folding channel. Fitting the guanidinium chloride dependencies of the refolding and unfolding reactions to analytical solutions for different folding scenarios enables us to propose a triangular mechanism as the minimal model for lysozyme folding explaining all observed kinetic reactions: [diagram in text]. All microscopic rate constants and their guanidinium chloride dependencies could be obtained from the experimental data. The results suggest that population of the intermediate during refolding increases the free energy of activation of the folding process. This effect is due to the increased stability of the intermediate state compared to the unfolded state leading to an increase in the free energy of activation (deltaG0) compared to folding in the absence of populated intermediate states. The absolute energy of the transition state is identical on both pathways. The results imply that pre-formed secondary structure in the folding intermediate obstructs formation of the transition state of folding but does not change the nature of the rate-limiting step in the folding process.  相似文献   

10.
11.
Recently, we found that different low molecular weight compounds, all known to stabilize proteins in their native conformation, are effective in correcting the temperature-sensitive protein folding defect associated with the deltaF508 cystic fibrosis transmembrane regulator (CFTR) protein. Here we examined whether the folding of other proteins which exhibit temperature-sensitive folding defects also could be corrected via a similar strategy. Cell lines expressing temperature-sensitive mutants of the tumor suppressor protein p53, the viral oncogene protein pp60src, or a ubiquitin activating enzyme E1, were incubated at the nonpermissive temperature (39.5 degrees C) in the presence of glycerol, trimethylamine N-oxide or deuterated water. In each case, the cells exhibited phenotypes similar to those observed when the cells were incubated at the permissive temperature (32.5 degrees C), indicative that the particular protein folding defect had been corrected. These observations, coupled with our earlier work and much older studies in yeast and bacteria, indicate that protein stabilizing agents are effective in vivo for correcting protein folding abnormalities. We suggest that this type of approach may prove to be useful for correcting certain protein folding abnormalities associated with human diseases.  相似文献   

12.
13.
In order to calculate the tertiary structure of a protein from its amino acid sequence, the thermodynamic approach requires a potential function of sequence and conformation that has its global minimum at the native conformation for many different proteins. Here we study the behavior of such functions for the simplest model system that still has the essential features of the protein folding problem, namely two-dimensional square lattice chain configurations involving two residue types. First we demonstrate a method for accurately recovering the given contact potential from only a knowledge of which sequences fold to which structures and what the non-native structures are. Second, we show how to derive from the same information more general potential functions having much better positive correlations between potential function value and conformational deviation from the native. These functions consequently permit faster and more reliable searches for the native conformation, given the native sequence. Furthermore, the method for finding such potentials is easily applied to more realistic protein models.  相似文献   

14.
We have investigated the proximity of the N and C termini in protein structures, and developed a model to test the theoretical possibility that proteins fold with their termini closely associated. On average, the distance between the termini is not significantly different from what would be expected based on chance. However, the theoretical model indicated that it is possible to greatly decrease the N-to-C terminal distance by allowing small (approximately six amino acid residues) solvent-accessible terminal fragments to move. Subsequent to this distance minimization method, more than 90% of the proteins studied had smaller-than-expected N-to-C distances, but only minor structural modification.  相似文献   

15.
16.
17.
18.
Bone repair by regeneration as we know it continues to undergo changes, with advances approaching that may change our treatment of patients with craniofacial deformities and skeletal defects. Perhaps by the turn of the century, patients born with asymmetric deformities due to lack of growth will be treated early in life by skeletal stretching, and then later in life by skeletal distraction that is followed by use of accelerating factors to assist the healing processes. All of these available modalities are part of the regeneration of new bone formation. The future of such changes is very interesting, and our ability to help our patients will be maximized. We may even look back 25 years from now at bone grafting and find it to be obsolete and crude. It is hoped that with the new modalities being developed, we will not deviate from the use of a bone grafting procedure, which is the workhorse of the craniofacial surgeon. Bone grafting is used by all surgeons working on the craniofacial skeleton despite the problems of unpredictability of healing and an inability to calculate what percentage of the original graft will survive. The transplantation issue will be solved. The problems with donor site morbidity will continue. The use of inorganic bone substitutes will continue to have its limitation, particularly in type II wounds, which we as plastic surgeons see in the craniofacial region. As we redefine our approach to skeletal repair, we may look back and find solutions to some of the major problems we have had. The rapid stretch of soft tissue after facial advancement or structural alteration that is accompanied by a relapse due to the elastic recoil of the soft tissue could be eliminated by gradual distraction. The bone will undergo better functional adaptation when it has a gradual change in structure based on adjustment and molding in a gradual fashion. The problem of donor site morbidity and a prediction formula for bone could be resolved with new bone formation in situ by mineralization of the area under repair. Bone healing enhancers are here to stay and their clinical application will produce a far-reaching better final outcome (Fig. 11).  相似文献   

19.
According to landscape theory proteins do not fold by localised pathways, but find their native conformation by a progressive organisation of an ensemble of partly folded structures down a folding funnel. Here, we use kinetics and protein engineering to investigate the shape of the free-energy profile for two-state folding, which is the macroscopic view of the funnel process for small and rapidly folding proteins. Our experiments are based mainly on structural changes of the transition state of chymotrypsin inhibitor 2 (CI2) upon destabilisation with temperature and GdnHCl. The transition state ensemble of CI2 is a localised feature in the free-energy profile that is sharply higher than the other parts of the activation barrier. The relatively fixed position of the CI2 transition state on the reaction coordinate makes it easy to characterise but contributes also to overshadow the rest of the free-energy profile, the shape of which is inaccessible for analysis. Results from mutants of CI2 and comparison with other two-state proteins, however, point at the possibility that the barrier for folding is generally broad and that localised transition states result from minor ripples in the free-energy profile. Accordingly, variabilities in the folding kinetics may not indicate different folding mechanisms, but could be accounted for by various degrees of ruggedness on top of very broad activation barriers for folding. The concept is attractive since it summarises a wide range of folding data which have previously seemed unrelated. It is also supported by theory. Consistent with experiment, broad barriers predict that new transition state ensembles are exposed upon extreme destabilisation or radical mutations.  相似文献   

20.
Computer simulations of simple exact lattice models are an aid in the study of protein folding process; they have sometimes resulted in predictions experimentally proved. The contact interactions (CI) method is here proposed as a new algorithm for the conformational search in the low-energy regions of protein chains modeled as copolymers of hydrophobic and polar monomers configured as self-avoiding walks on square or cubic lattices. It may be regarded as an extension of the standard Monte Carlo method improved by the concept of cooperativity deriving from nonlocal contact interactions. A major difference with respect to other algorithms is that criteria for the acceptance of new conformations generated during the simulations are not based on the energy of the entire molecule, but cooling factors associated with each residue define regions of the model protein with higher or lower mobility. Nine sequences of length ranging from 20 to 64 residues were used on the square lattice and 15 sequences of length ranging from 46 to 136 residues were used on the cubic lattice. The CI algorithm proved very efficient both in two and three dimensions, and allowed us to localize energy minima not localized by other searching algorithms described in the literature. Use of this algorithm is not limited to the conformational search, because it allows the exploration of thermodynamic and kinetic behavior of model protein chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号