共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
为准确提取检测到的局部放电信号,针对高压电力电缆的噪声抑制问题,提出了自适应变分模态分解(AVMD)结合自适应小波包分解的方法提取纯净的局放信号。首先运用AVMD将周期性窄带干扰、白噪声和局放信号分解在不同的基本模态分量中,将周期性窄带干扰滤出,得到仅含有白噪声的局放信号。再运用自适应小波包分解,将信号分解在高中低频的分量中,根据阈值法将不含局放信号的分量滤出,得到较为纯净的局放信号,并将所提方法分别与其中单独一种算法进行去噪比较分析。仿真结果表明,所提方法抑制噪声效果更明显,与仿真信号的相似度最高。 相似文献
4.
5.
局部放电(PD)在线监测是高压电机状态监测的常用技术。然而现场的噪声干扰难以避免,最常见的噪声是白噪声和周期性窄带噪声。为此提出一种结合奇异值分解与小波变换(SVD-WT)的去噪方法,对原始PD信号进行SVD分解,通过计算奇异值序列的峭度值,自适应的选取需要重构奇异值实现周期性窄带噪声的去除;通过计算滑动窗内信号的方差值,确定PD信号的起始位置;对无PD发生的位置进行置零,得到去除噪声后的PD信号。通过对仿真和实测的PD信号进行去噪分析,与经验模态分解与小波变换(EMD-WT)和自适应奇异值分解(ASVD)进行对比分析,仿真和实测的PD信号去噪结果表明,SVD-WT方法具有优异的性能。 相似文献
6.
7.
特高频法检测GIS局部放电时往往受到不同类型的噪声干扰,天线采集到微弱的特高频信号容易被噪声淹没,导致局部放电检测不准确甚至检测系统在现场无法正常工作等问题。针对上述问题,提出一种基于改进EMD的GIS局部放电特高频信号降噪方法。该方法利用对偶树复小波(Dual-Tree Complex Wavelet Transform,DTCWT)对经验模态分解(Empirical Mode Decomposition,EMD)降噪法进行改进并对GIS局部放电特高频信号进行降噪。利用EMD法将含噪信号分解为一系列的固有模态函数(IMF)分量,然后利用联合分布模型进行每个IMF分量的DT-CWT降噪的小波系数估计,对每个IMF分量进行降噪。最后将降噪后的IMF分量进行信号重构得到降噪后的信号。GIS局部放电特高频信号降噪试验结果表明了该方法达到很好的噪声与非噪声信号的分离效果,拥有较高信噪比,以及能够保持早期局部放电特高频信号特征。 相似文献
8.
基于EMD的局部放电窄带干扰抑制算法 总被引:5,自引:2,他引:5
以经验模态分解(empirical mode decomposition,EMD)为基础,提出了一种基于包络线及有效值的自适应窄带干扰抑制算法,用以从噪声中提取局放信号。EMD可以自适应地将信号分解成若干阶不同频率段的固有模态函数(intrinsic mode functions,IMF),窄带干扰经分解后在振幅上显示出与局放脉冲明显不同的特征,通过包络线及有效值确定的阈值可以有效地区别开来。仿真及实际处理结果表明:与常规的基于小波变换的窄带抑制算法相比,该算法具有较强的自适应性;能有效地抑制局放信号中的窄带干扰。 相似文献
9.
本文提出了局部放电信号的固有时间尺度分解(intrinsic time-scale decomposition,ITD)去噪方法,将信号进行固有时间尺度分解,得到多个固有旋转分量(proper rotation component,PRC),采用3σ准则去除每个PRC的异常噪声,然后对其进行重构,从而实现局部放电信号的消噪.分别用小波变换(Wavelet transform)、经验模式分解(empirical mode decomposition,EMD)和ITD处理含噪局放信号,比较它们的均方根误差、相关系数和计算速度.结果表明:ITD的去噪过程具有自适应性,有较好的去噪性能和较快的计算速度,非常适合局部放电信号的在线去噪. 相似文献
10.
为有效抑制局部放电特高频信号中的噪声干扰,提出一种基于广义S变换模时频矩阵的去噪方法。基于二维模时频矩阵,采用区域最大能量法提取周期性窄带干扰的特征量,并通过矩阵逆向分离将其去除;采用奇异值分解去噪方法抑制信号中的高斯白噪声。使用该方法对仿真信号和实验室实测信号进行去噪处理,并与传统方法去噪结果进行对比。结果表明,所提方法能有效抑制局部放电信号特高频信号中的噪声,同时更好地保留了原始局部放电信号特征。对现场实测信号进行去噪处理,与传统方法相比,该方法具有较高的噪声抑制比和较低的幅值衰减比,可以有效提取局部放电超高频信号。 相似文献
11.
为了抑制局部放电(PD)信号中含有的窄带周期干扰和白噪声,提出一种基于优化的变分模态分解(VMD)阈值去噪方法。首先针对VMD算法可能造成染噪信号欠分解或过分解的问题,提出一种基于频谱分析和四分位数的模态分解数K值优化方法,并结合模态的峭度特征去除窄带周期干扰和高频白噪声;针对PD信号主导模态中残留的白噪声,利用文中研究中发现的VMD分解白噪声所得模态的两个统计特性,提出一种噪声标准差估计方法来确定阈值,最后引入间隔阈值函数对PD信号主导模态进一步去噪。采用该方法对仿真和实测信号进行去噪处理,并将其与传统方法进行对比,结果表明,所提方法不仅可以更有效地抑制噪声,同时也能更好地保留PD信号的特征。 相似文献
12.
基于经验模态分解和固有模态函数重构的局部放电去噪方法 总被引:2,自引:0,他引:2
为了提取局部放电信号的特征,提出一种基于经验模态分解(EMD)和固有模态函数(IMF)重构算法的局部放电噪声抑制方法.首先对含有噪声的局部放电信号进行经验模态分解,得到含特征频率的固有模态函数,然后对所得的固有模态函数分量进行自适应阈值处理后重构,从而抑制噪声干扰.相比于常规的小波去噪算法,该方法具有自适应性强,不受小波函数和最佳小波分解层数选取的限制等优点,而且实现了阈值和固有模态函数阈值处理层数的自动选取.分别以仿真信号和实际信号为例,证明了该方法的有效性. 相似文献
13.
变压器局部放电监测逐层最优小波去噪算法 总被引:1,自引:0,他引:1
针对用于局部放电监测的去除白噪声算法会造成去噪脉冲信号波形畸变,脉冲幅值等波形参数产生较大误差,不利于进一步采用脉冲波形分析去除脉冲干扰的问题。为此根据局部放电信号在小波域上的分布特点,提出了各尺度信号分解和重构的最优小波选择方法,并给出了各尺度小波阈值的计算方法。仿真信号的最优小波去噪结果显示去噪信号具有波形畸变率低和幅值误差小的特点;实测信号的最优小波去噪结果证明提出的最优小波去噪算法能有效去除局部放电监测信号中的噪声,在局部放电在线监测应用中具有良好的去噪效果。 相似文献
14.
为了解决局部放电信号去噪过程中自适应性不足,提出了基于完全经验模态分解和总体平均经验模态分解 (CEEMD-EEMD)的局部放电阈值去噪新方法。首先将放电信号进行CEEMD分解,其次对分解出来的固有模态函数进行EEMD分解,根据数理统计的知识将分解后的信号进行阈值去噪。利用该算法对局部放电的仿真信号和实测信号进行去噪处理,并与常规的小波去噪算法比较分析。仿真和实验的去噪结果表明,基于CEEMD-EEMD的局部放电阈值去噪方法取得了良好的去噪效果,验证了该方法的有效性,从而为局部放电信号的预处理提供了一种新思路。 相似文献
15.
针对局部放电信号去噪,传统的小波阈值法因小波基、阈值和分解层数这三个因素的影响,会使去噪后的波形发生畸变,产生较大误差。为了减小这些因素的干扰,本文提出了基于小波阈值去噪的新方法。首先利用波形相似法选取最优小波基,其次通过对理想局部放电信号和高斯白噪声进行每个尺度的小波分解与重构,并结合统计学知识确定局部放电信号去噪的阈值,最后对高频信号和低频信号进行能量分析,确定最优的分解层数。利用该方法和传统的小波阈值法对仿真放电信号去噪,去噪结果表明新方法在信噪比、均方根误差、相关系数和波形畸变率四个不同的指标上都得到了有效的提升,定性和定量的分析验证了该方法的有效性,实测的去噪结果表明新方法去噪效果令人满意,为局部放电信号去噪提供了一种新思路。 相似文献
16.
17.
为了解决高压电缆绝缘监测系统在实际工作环境中采集的局部放电(PD)脉冲信号含有噪声的问题,提出了一种融合ICA的EMD去噪算法。详细介绍了该算法的去噪原理。该算法的优点在于不仅有效地去除了局部放电脉冲信号中的噪声,而且还很好地保留了PD信号的完整性。经过实验室模拟实验和现场在线绝缘监测实验,可以看出该算法取得了很好的去噪效果,证实了该算法的有效性与可靠性。 相似文献
18.
改进的EMD方法在局部放电信号提取中的应用 总被引:4,自引:0,他引:4
电力设备内部早期故障产生的局部放电信号很微弱,往往处于强大噪声的包围之中。为了从复杂环境中准确提取局部放电信号,提出应用改进的EMD方法进行局部放电特征信号的提取。首先,对放电信号进行EMD分解;其次,应用能量门限法对EMD分解得到的IMF进行筛选;再次,应用敏感固有模态函数选择法找出敏感IMF,并与局部放电特征信号进行对比。最后,应用结果表明了此方法的可行性与准确性。 相似文献
19.