首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 46 毫秒
1.
针对中厚板辊式淬火机淬火工艺过程,在分析淬火喷水系统射流流场结构及换热特性的基础上,阐明其淬火过程的热交换机理主要为射流冲击换热.并结合实际工况参数,通过模拟分析不同淬火冷却条件对中厚钢板温度场及应力场的影响规律,指出高压淬火区的高强度冷却是板材内部应力产生的主要因素.研究表明辊式淬火机淬火过程的冷却机理在于:在淬火钢板800一500℃的温度区间,采用高压淬火区高强度冷却,有利于钢板获得大于临界淬火速度的高冷却速率,以避免发生其它类型的组织转变;在500℃以下的温度区间,采用低压淬火区慢冷,有利于减小钢板的热应力和马氏体转变过程中产生的组织应力,从而降低钢板在马氏体转变过程中的综合内应力,减小钢板变形倾向.  相似文献   

2.
选取辊式淬火机为研究对象,通过分析钢板冷却过程传热机理,建立了钢板热传导数学模型。采用外节点法和有限差分方法分别对计算区域和控制方程离散化处理,运用VB.NET语言编写程序,对钢板淬火冷却过程温度场进行仿真研究。结果表明,本文所建立的淬火过程热传导数学模型可以作为淬火机二级控制系统的基础,进行过程控制系统的开发。  相似文献   

3.
金属淬火过程换热面对换热系数影响的有限元探求法   总被引:1,自引:0,他引:1  
在金属淬火过程的数值模拟中,换热系数的正确求解是保证工件温度场以及应力/应变场模拟结果与实际情况相符合的先决条件.据此研究和分析了换热系数反求法的数学模型,采用二维圆柱坐标有限元法对该数学模型求解,并考虑了换热面对换热系数的影响,求出了圆柱侧面和下端面的换热系数.研究发现,换热面的空间方位对换热系数有较大的影响.和圆柱体的侧面相比,底面的换热变化规律相同,但是换热条件不佳,换热系数较小.用求得的换热曲线模拟大尺寸工件的淬火过程,发现考虑换热面对换热系数的影响后,其计算的温度分布明显不同.  相似文献   

4.
付天亮  李远明  李勇  刘宇佳  李峰 《轧钢》2012,29(3):46-50
针对中厚板辊式淬火机喷水系统的非线性、时变性和大滞后等缺点,引入模糊控制的结构和理论基础,计算水量偏差和偏差变化率模糊子集的隶属度值,制定模糊控制规则,并结合实际调试过程中总结出的模糊策略,即采用分段PID控制方法和"软过渡"控制方法相结合的控制方法,建立了Fuzzy-PID喷水控制系统。应用结果表明,该控制系统水量超调量小、稳定性好、调节迅速、可移植性好,满足了实际生产的需要。  相似文献   

5.
淬火油动态下换热系数的测量及计算   总被引:7,自引:0,他引:7  
为了测量和计算工业条件下淬火油在不同流速下的换热系数 ,采用超声波多普勒流量计测定了介质的流速 ,用 12 0× 12 0× 2 0 (mm)平板状试样和反传热法测定与计算了换热系数。结果表明 ,换热系数曲线能更好地反映表面热量传递的真实情况 ;随着介质流速的增加 ,换热系数的最大值呈增加趋势 ,当搅拌使介质中产生气泡时 ,介质的换热系数明显降低。  相似文献   

6.
针对薄铝板淬火过程,本文采用不同函数形式描述淬火换热系数,并借助ABAQUS有限元软件进行温度场和位移场模拟,得到换热系数和位移场的关系。基于试验所得翘曲位移反求换热系数,并对所选取的函数形式进行了优选。  相似文献   

7.
针对薄铝板淬火过程,本文采用不同函数形式描述淬火换热系数,并借助ABAQUS有限元软件进行温度场和位移场模拟,得到换热系数和位移场的关系。基于试验所得翘曲位移反求换热系数,并对所选取的函数形式进行了优选。  相似文献   

8.
淬火冷却介质换热系数研究进展   总被引:3,自引:1,他引:2  
淬火冷却介质换热系数不仅是评定淬火介质冷却能力的主要参数,也是淬火过程数值模拟中最重要的边界条件之一.它受很多因素的影响,如工件的材质、尺寸、表面状态等,因此很难精确测定.本文概述了近年来有关换热系数的研究,并对以后的研究工作做了展望.  相似文献   

9.
淬火介质换热系数绵计算机测算   总被引:4,自引:0,他引:4  
提出了用计算机进行测量和计算淬火过程中淬火介质换热系数的反传热模型。该模型利用采样系统测得的上结位置的冷却曲线来计算淬火介质的换热系数,获得其随表面温度变化的曲线,对水和油的测算结果表明,计算值和实际情况吻合较好。  相似文献   

10.
铝合金厚板淬火过程换热系数的求解与验证   总被引:2,自引:0,他引:2  
在铝合金厚板淬火过程的数值模拟中,换热系数的正确求解是工件温度场、应力场模拟结果和实验相符的先决条件.分析换热系数反求法的数学模型,并采用MATLAB编程实现该数学模型的求解.用求得的换热系数作为MSC·MARC建立的有限元模型的边界条件,计算试件的温度场变化曲线,计算结果和实测数据基本吻合.  相似文献   

11.
铝合金厚板淬火表面换热系数的离散解析求法   总被引:4,自引:1,他引:3  
为了快速准确求取铝合金厚板淬火过程的换热系数,对淬火热传导过程进行分析。首先,将换热系数解析过程假设为淬火温度离散化的,并且是相邻离散点可进行迭代优化的计算过程。然后,分步解析求解了各离散温度区间的换热系数,最后完成了数据修正和仿真计算还原。结果表明,该方法获得的换热系数,可以使实验冷却曲线与计算冷却曲线较好的吻合,从而证明这种计算方法的可行性,并在文末对该方法的误差来源和特点进行了分析。  相似文献   

12.
通过6061铝合金末端淬火测得的冷却曲线,结合有限差分法和反传热求解法,研究了6061合金固溶处理在不同冷却方式下的冷速及表面换热系数与温度的变化规律。结果表明,6061铝合金在水雾冷和喷水冷却过程中,端面冷速先增大后减小,在400℃左右达到峰值,峰值冷速约为30℃/s。6061铝合金的表面换热系数与温度呈非线性关系,其大小随着温度的降低先逐渐增大,在150~100℃范围内达最大值,然后下降;在风冷过程中,表面换热系数值先急剧增大,当温度下降到500℃后增速明显减慢。  相似文献   

13.
为了获取不同真空油淬工艺条件下的换热系数,对真空油淬换热特性进行研究.采用φ40 mm×80 mm不锈钢探头在双室真空油淬炉内进行真空淬火试验,测得多种工艺条件下的冷却曲线.借助INTEMP有限元软件求解热流密度,根据牛顿换热定律计算出换热系数.然后,将其作为边界条件求解淬火过程温度场,可以得到与实测值吻合较好的冷却曲...  相似文献   

14.
在厚板淬火过程的数值模拟中,换热系数的正确求解是保证其温度场及应力场模拟结果与实际结果一致的前提。在实测冷却曲线的基础上建立了换热系数求解的两种数学模型,计算了换热系数随淬火时间关系曲线。基于ABAQUS模拟软件分析了两种模型在某特定区域温度场的实测与模拟误差。结果表明,换热系数随时间呈非均匀分布,在20~40 s之间出现换热系数峰值;一点法求解的换热系数优于两点法;两种方法计算的表面温度均出现温度回升现象,但一点法求解的表面温度回升较两点法的平缓。  相似文献   

15.
The interfacial heat transfer coefficient(IHTC) between the casting and the mould is essential to the numerical simulation as one of boundary conditions. A new inverse method was presented according to the Tikhonov regularization theory. A regularized functional was established and the regularization parameter was deduced. The functional was solved to determine the interfacial heat transfer coefficient by using the sensitivity coefficient and Newton-Raphson iteration method. The temperature measurement experiment was done to ZL102 sand mold casting, and the appropriate mathematical model of the IHTC was established. Moreover, the regularization method was used to determinate the IHTC. The results indicate that the regularization method is very efficient in overcoming the ill-posedness of the inverse heat conduction problem(IHCP), and ensuring the accuracy and stability of the solutions.  相似文献   

16.
Abstract

For computer simulation of a quenching process, the fundamental prerequisite is to have the relevant heat transfer coefficient (HTC) calculated as a function of the workpiece’s surface temperature and time respectively. In order to calculate the HTC experimental measurement of the temperature–time history (cooling curve) near the workpiece surface is necessary. In this investigation, cylindrical probes with diameters of 20, 50 and 80 mm are used. The cooling curve was always measured 1 mm below the surface of the probe. Special care has been taken to keep all other factors (e.g. design of the probes, temperature measurement, quenching conditions and calculation procedure), which can influence the calculated HTC, constant, in order to ensure that the only variable is the diameter of the probe. Assuming a radially symmetrical heat flow at the half length of the probe, the HTC was calculated using one-dimensional inverse heat conduction method. The unexpected striking result of this investigation is the fact that for the probe diameter (80 mm) the calculated HTC as a function of surface temperature does not show the film boiling phase. A plausible explanation for this effect is given, based on the critical heat flux density. The possibility of establishing a simple fixed relation (a correction factor) between the HTC and the diameter of cylinders is discussed.  相似文献   

17.
According to inverse heat transfer theory, the evolutions of synthetic surface heat transfer coefficient (SSHTC) of the quenching surface of 7B50 alloy during water-spray quenching were simulated by the ProCAST software based on accurate cooling curves measured by the modified Jominy specimen and temperature-dependent thermo-physical properties of 7B50 alloy calculated using the JMatPro software. Results show that the average cooling rate at 6 mm from the quenching surface and 420–230 °C (quench sensitive temperature range) is 45.78 °C/s. The peak-value of the SSHTC is 69 kW/(m2·K) obtained at spray quenching for 0.4 s and the corresponding temperature of the quenching surface is 160 °C. In the initial stage of spray quenching, the phenomenon called “temperature plateau” appears on the cooling curve of the quenching surface. The temperature range of this plateau is 160–170 °C with the duration about 3 s. During the temperature plateau, heat transfer mechanism of the quenching surface transforms from nucleate boiling regime to single-phase convective regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号