首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
针对固溶温度对2195铝锂合金成形性能的影响展开研究.对T6态2195铝锂合金板材在500、510和520℃温度下进行10 min固溶处理,对固溶后的板料与未经固溶处理的原始板料均进行EBSD显微组织分析、室温拉伸试验、杯突试验和硬度测试,由此获得不同固溶温度下板料及原始板料的微观组织形貌、屈服强度、抗拉强度、屈强比、...  相似文献   

2.
对喷射成形挤压态的1420铝锂合金进行不同温度、不同时间的固溶处理。采用光学显微镜(OM)、扫描电镜(SEM)、能谱仪(EDS)、X射线衍射仪(XRD)和电子万能试验机对合金的显微组织和力学性能进行分析。结果表明:挤压态合金中分布着大量Al3Li、AlLi粒子。经450 ℃×0.5 h固溶处理后可获得细小的组织和良好的综合力学性能;第二相颗粒基本溶入合金基体中,抗拉强度为377.47 MPa,伸长率为17.3%,晶粒平均尺寸为2.91 μm;合金的断裂方式为韧性断裂。随着固溶温度、时间的增加,裂纹起源于合金缺陷处,以穿晶的方式扩展。  相似文献   

3.
通过金相、扫描电镜、拉伸和断裂韧性试验等分析测试手段,研究了固溶处理温度及预拉伸变形量对2197铝锂合金板材组织和性能的影响。结果表明,2197铝锂合金在490~580℃温度范围内固溶再时效后,其强度随固溶处理温度的升高先增大后减小,强度峰值出现在540℃。当固溶处理温度高于565℃时,合金出现了再结晶现象。但是,合金在490~580℃固溶处理过程中均未出现明显的过烧现象。固溶处理后进行预拉伸变形可以有效提高合金的强度。综合考虑合金的强韧匹配,2197合金板材较优的固溶和预拉伸变形量分别为540℃×1.5 h和2%~5%。  相似文献   

4.
通过显微组织观察、硬度测试以及XRD分析,研究强化固溶处理对一种Sr微合金化2099型铝锂合金组织和位错强化的影响。结果表明,与常规固溶(540℃,2h)相比,强化固溶(540℃,2h+550℃,2.67h)促进了合金中粗大第二相的溶解,降低了合金后续T8时效处理(121℃,14h+151℃,48h)后的硬度(分别为162.7HV和154.1HV),显著降低了合金中的位错及位错强化。基于Taylor公式的定量计算表明,强化固溶使合金时效强化有所加强,强化固溶合金硬度的降低主要是位错强化降低所致。微合金化元素Sr不能有效使2099型铝锂合金在其固溶处理温度(540~550℃)驻留位错,2099型铝锂合金强度、硬度的进一步提高需要进行进一步微合金化设计。  相似文献   

5.
本文对2195铝锂合金进行了改变固溶温度和时效时间的热处理实验,考察了固溶时效工艺对条件下拉伸性能的影响,研究表明:在本实验参数范围内2195铝锂在低温下σb最高在660-680MPa,002最高在580—600MPa,而相应的塑性指标延伸率高于8%。在典型的欠时效态,2195铝锂具有优异的低温塑性,延伸率达29%以上。低温实验条件下,T6态样品呈现典型的层状分割断面的断口特征,随溶温度提高,分层有细化倾向,层内塑性变形特征减弱,沿晶倾向增强。  相似文献   

6.
热处理对2090铝锂合金拉伸性能的影响   总被引:1,自引:0,他引:1  
  相似文献   

7.
对厚度为8.0mm的TC17合金固溶处理温度、时间、冷却方式进行了研究,讨论了热处理工艺参数、组织与性能之间的关系,为该合金板材选择合适的热处理制度提供依据。  相似文献   

8.
加热后分别采用自来水、淬火油、流动空气及炉内静止空气冷却等不同冷却方式,对1420铝锂合金进行固溶.随后再进行时效处理。采用三点弯曲恒应变法检测试样的抗应力腐蚀性能,在恒电位仪上测试样的阳极极化曲线,分析其抗电化学腐蚀能力,研究固溶冷却速度对合金抗蚀性能的影响。利用透射电镜分析固溶冷却速度对台金微观组织的影响。试验发现在该合金固溶过程时,降低冷却速度可使合金时效后的抗应力腐蚀和抗电化学腐蚀性能提高,合金基体组织中析出的δ′相减少、尺寸增大。  相似文献   

9.
马康  王清峰  宋健  初冠南 《锻压技术》2023,48(2):203-209
2195铝锂合金作为可热处理强化新型铝锂合金的代表,具有高比强度、高耐腐蚀和抗疲劳等优点,常作为受力结构件被广泛应用于航天航空领域,因此,有必要对其热处理制度展开研究。通过室温单轴拉伸试验和硬度测试,获得了在不同固溶温度、不同固溶时间、不同人工时效温度和不同人工时效时间下的型材的强度、伸长率和硬度值,研究了固溶-时效参数对O态2195铝锂合金型材力学性能的影响。结果表明:在520℃下固溶1.5 h以上,再在高于160℃的环境下至少保温24 h进行人工时效,可使2195铝锂合金型材满足工程需求。运用最小二乘法建立了2195铝锂合金型材的硬度值与抗拉强度值之间的线性关系,可以较快地得出强度值。  相似文献   

10.
CP276铝—锂合金的固液温度研究   总被引:3,自引:1,他引:3  
探讨了固溶温度对CP276铝-锂合金显微组织和力学性能的影响,研究证明,提高固溶温度可以促进Ci、Li原子向基体溶解,进而提高合金时效的沉淀强化效果,并且发现,该合金经固溶处理后可得到未完全再结晶组织,这种微观组织将对基体产生“组织强化效应”,随着固溶温度升高,合金的再结晶程度也有所增加,从而使组织强化效应受到削弱,力学性能测定结果显示,CP276合金的理想固溶温度为530℃左右。  相似文献   

11.
利用TEM、室温拉伸等手段研究了不同时效处理制度对某新型第三代铝锂合金微观组织和力学性能的影响。结果表明:时效温度和时间对合金硬度、拉伸强度有明显影响。该铝锂合金时效的主要强化相是球状面心立方δ′相和密排六方T1相。其中δ′相是自然时效主要强化相,随着温度升高和时间延长,δ′相逐渐溶解并开始析出大量针状T1相,使合金硬度和强度显著提高,在170 ℃时效12 h强度即可达到峰值。  相似文献   

12.
时效制度对2A97铝-锂合金组织和性能的影响   总被引:1,自引:1,他引:1  
通过拉伸测试和透射电镜分析,研究时效温度和时间对2A97铝锂合金组织和性能的影响。结果表明:经淬火后分别在135℃和155℃时效,随着时效温度升高,2A97合金强度升高,达到峰值强度的时间提前,延伸率降低;随着时效时间延长,合金屈服强度升高,抗拉强度则先升高而后降低,出现峰值强度,延伸率下降;当合金在155℃时效36 h,获得最佳强度和塑性匹配,抗拉强度为500 MPa,屈服强度为413 MPa,延伸率为7%;随着时效温度升高,合金组织中T1(Al2CuLi)相数量增加;135℃的过时效合金显微组织主要为θ′/θ″(Al2Cu)相和δ′(Al3Li)相,155℃的时效合金显微组织主要为T1相、θ′/θ″相和δ′相。  相似文献   

13.
通过硬度、电导率、拉伸试验及金相分析,研究了在460、475、490℃分别保温30、60、120 min的固溶工艺对7449铝合金组织和性能的影响。结果表明,475℃×1 h是该合金最优的固溶工艺,此时合金的综合性能最佳;且固溶处理+自然时效态合金的抗拉强度、屈服强度和伸长率分别为561.32 MPa、362.19 MPa、22.92%;合金的固溶处理过烧温度为490℃;在固溶处理中,固溶温度比保温时间对该合金性能的影响更大。  相似文献   

14.
研究1050~1250℃ 固溶处理对铸造625合金显微组织和拉伸性能的影响.采用SEM、EDS、EPMA和DTA研究合金的显微组织及凝固特征.结果表明,合金的凝固顺序为L→L+γ→L+γ+MC→L+γ+MC+γ/Laves→ γ+MC+γ/Laves.经1225和1250℃固溶处理后,组织中Laves相发生初熔.经不同...  相似文献   

15.
研究了不同温度的固溶和时效工艺对Ti2041合金组织和硬度的影响。结果表明:当固溶温度为700℃时,随着保温时间增加,组织中初生α相的含量逐渐增多,晶粒尺寸逐渐增大;当固溶温度为750℃时,随保温时间增加,发生了静态再结晶,且有次生α相析出,晶粒尺寸也逐渐增大;当固溶温度为800℃时,晶粒内部出现α′马氏体,形貌由等轴状变为板条状。在不同固溶温度下硬度值变化也不同。在固溶温度为700℃时,随着保温时间的增加,硬度值从301.6HV降到285.2HV;在固溶温度为750℃时,硬度值随着保温时间的增加先增长后降低,最大值为308.2 HV;在固溶温度为800℃时,硬度值随着保温时间的增加逐渐变大,最大值为331.4 HV。在经时效处理后,不同时效温度下均出现了次生α相。随时效温度的升高,次生α相尺寸越小,显微硬度值逐渐增大,最大值达到了451.75HV,主要强化机制为第二相(次生α相)弥散强化。  相似文献   

16.
采用光学显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)、X射线衍射和室温拉伸研究固溶制度对1933铝合金自由锻件组织和力学性能的影响.结果表明:由于Al_3Zr粒子对晶界的钉扎作用,在470 ℃以下固溶时,合金的再结晶程度很低(<15%);随着固溶温度升高,再结晶程度逐渐上升;510 ℃固溶时,合金的再结晶程度显著增大(约为48%);1933铝合金锻件中第二相主要有Al_7Cu_2Fe相和η相;合金经470 ℃固溶60 min后,η相溶解比较充分,此后随温度升高或时间延长第二相变化不大;合金的最佳固溶制度为470 ℃、60 min,在此条件下合金具有最好的力学性能.  相似文献   

17.
沈君 《金属热处理》2012,37(9):119-122
采用差热分析(DSC)、室温拉伸、电导率测试、显微组织观察研究了不同固溶温度和固溶时间对7050铝合金厚板组织和性能的影响。结果表明,试验用合金的过烧温度约为486.3℃;随固溶温度升高,合金电导率下降,强度先升高后下降,热处理温度高于过烧温度后,伸长率迅速下降。在480℃×90 min条件下固溶处理时,T6时效态合金的抗拉强度、屈服强度和伸长率分别达到600 MPa、525 MPa和15.0%。合金适宜的固溶处理制度为480℃×(90~120)min。  相似文献   

18.
对热轧态Cu-1.0Cr-0.1Zr合金在电阻炉中进行了不同温度不同保温时间的固溶处理,并对固溶后合金的组织与性能进行了检测,分析了固溶温度与时间对该合金组织性能的影响。结果表明:固溶后合金组织性能由回复、再结晶、未溶粒子回溶与晶粒长大综合影响;随固溶温度升高,合金的硬度先大幅下降,后不断上升,而导电率不断下降;随固溶时间的延长,合金的硬度呈抛物线升高并趋于平缓的趋势,导电率的变化则与之相反。在固溶温度为950 ℃,固溶时间为120 min时,固溶基本完成,此时硬度为58.9 HBS,导电率为50%IACS。  相似文献   

19.
采用535 ℃×2 h固溶制度,将热锻态2297铝锂合金固溶水淬后冷轧,冷轧压下量为95%,然后将轧制样品在不同温度(120~190 ℃)和时间(0~80 h)范围内进行时效处理。采用拉伸、扫描电镜(SEM)和透射电镜(TEM)等测试方法,分析时效温度和时间对铝锂合金组织与性能的影响。结果表明:时效前的大塑性变形能获得纳米结构组织,能促进T1相均匀细小地析出,缩短合金达到峰时效的时间,最终成功制备了高强高塑性铝锂合金。在120~140 ℃温区内时效时,时效温度越高,达到峰时效的时间越短、强度越高。140 ℃达到峰时效时间缩短为40 h,此时合金的抗拉强度、屈服强度和伸长率分别为525 MPa、478 MPa和7.7%,主要强化相为细小的T1相。在170~190 ℃温区内时效时,时效温度越高,达到峰时效的时间越短,但抗拉强度与屈服强度迅速下降。170 ℃时效8 h达到峰时效状态,此时合金的抗拉强度、屈服强度和伸长率分别是503 MPa、462 MPa和5.0%,主要强化相仍为T1相,但已经明显粗化。  相似文献   

20.
采用拉伸力学性能、硬度、电导率测试、金相和电子显微分析技术,研究了固溶-时效处理对01975Al-Zn-Mg-Sc合金板材组织与性能的影响。结果表明:01975铝合金板材最佳固溶时效制度为470℃1 h固溶+120℃24 h时效。在此条件下,合金的抗拉强度、屈服强度、伸长率、硬度和电导率分别为532 N/mm2、496 N/mm2、15.07%、176.1HB和34.3%(IACS)。合金的高强度来源于Al3(Sc,Zr)粒子引起的亚晶强化和η'相引起析出强化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号