首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The failure analysis of a four-stroke 3000 kW off-shore operating diesel engine is presented. The failure occurred during engine normal operation period in the leak-off oil pipe from the injection valves, which experienced a fracture through the pipe wall and a diesel engine fire as a result. A detailed analysis of all elements which had an influence on the failure initiation was carried out, namely leak-off oil pipe vibration level, pipe stress level, presence of corrosion pits on the pipe external surface under the zinc coating and engine components temperature distribution in the failure zone. It was found that the crack initiation and propagation of the leak-off oil pipe from injection valves was driven by a fatigue mechanism, which was facilitated by loose pipe supports (excessive pipe vibration) and corrosion pits on the pipe surface that acted as stress concentrators. The contact of leak-off atomized oil due to the pipe through wall fracture with the hot engine exhaust muff (390 °C approximately) caused local fire of the diesel engine.  相似文献   

2.
《Composites Part B》2013,45(1):304-312
The main objective of this experimental study was to investigate the effects of seawater and impact loading on the fatigue life of glass–epoxy composite pipes under cyclic internal pressure. The pipes were produced by filament winding technique. Composite specimens were immersed in seawater for periods of 3, 6, and 9 months. After the impact tests are carried out at three different energy levels (5, 7.5, and 10 J), fatigue tests were conducted on the specimens. It is seen from results that fatigue life changes according to both impact energy and seawater immersion time. Fatigue life of non-impacted specimen is greater than the impacted one. Fatigue life increases in the impacted specimens up to 3 months and reaches generally maximum value. After that it decreases with increase in seawater immersion time. During the fatigue tests, fatigue damage types named perspiration, leakage, and eruption were observed.  相似文献   

3.
Through investigating and comparing the fatigue behavior of an as-cast Mg–7%Gd–5%Y–1%Nd–0.5%Zr alloy in both laboratory air and 3.5 wt.% NaCl solution, the effect of corrosion attack on fatigue crack initiation has been disclosed. The S–N curves showed that the fatigue strength in air was 120 MPa and not sensitive to the loading frequency, whereas the fatigue strength in NaCl solution decreased from 80 MPa to 60 MPa with the loading frequency decreasing from 20 Hz to 5 Hz. Observations to fracture surfaces demonstrated that in air, fatigue cracks preferentially initiated at the oxide inclusions. However, the fatigue crack initiation in NaCl solution was associated with corrosion pits. Moreover, multiple fatigue cracks initiated at pits on fracture surfaces of corrosion fatigue failed samples when the loading frequency decreased to 5 Hz. Based on the measured “defect area” of oxide inclusions, the predicted fatigue strength in air could be well fitted with the experimental data. However, due to the occurrence of hydrogen embrittlement and crack initiation at multiple sites, the fatigue strength of samples tested in NaCl solution cannot be predicted.  相似文献   

4.
The wire winding of high pressure vessels is a technique usually applied to introduce initial compressive stresses in the inner core of the vessel, with the aim to improve the fatigue life under cyclic pressure conditions. In this work, the procedure followed to calculate the number of design cycles is presented, using the fracture mechanics approach and the structural integrity concepts. In particular, the API 579-1/ASME FFS-1 procedure has been used to analyse the structural integrity of the vessel through the crack propagation stage. Starting from a postulated internal semi-elliptical crack the number of design cycles is determined, the flaw aspect ratio is updated and the structural integrity of the cracked vessel is evaluated using the Failure Assessment Diagram (FAD). Different propagation laws, which take into account for negative stress intensity ratio factors R = Kmin/Kmax < 0, are reviewed, because of their high influence on the fatigue life of wire-wound vessels. In addition, this paper presents a number of useful expressions to calculate the stress intensity factor (SIF) for internal semi-elliptical cracks in wire-wound pressure vessels, in order to carry out the numerical integration of the number of cycles, updating the flaw aspect ratio, during the fatigue crack growth.  相似文献   

5.
The effects of winding angle on the behaviour of glass/epoxy composite tubes under multiaxial cyclic loading were investigated. The performance of such composite tubes was studied using an indigenous automated test procedure that is compatible with the internal qualification requirements of the composite pipe manufacturers. Glass fibre reinforced epoxy (GRE) composite pipes with three winding angles, namely, [± 45°]4, [± 55°]4, and [± 63°]4, were tested. A novel automated test rig was fabricated to accommodate five stress ratios, ranging from pure axial to pure hoop loadings. The cyclic pressure test was conducted until droplets of water were seen on the outer surface of the pipe. Failure envelopes were then constructed based on the first ply failure (FPF) points determined from the axial stress to hoop strain response at five stress ratios. Three functional failure modes, namely, tensile axial, weepage, and local leakage failures, were observed during the tests. The results indicate that each winding angle dominates a different optimum pressure loading condition, namely, [± 55°]4 for pure hydrostatic loading, [± 45°]4 for hoop to axial loading, and [± 63°]4 for quad hoop to axial loading. The envelopes show a strong dependence on the stress ratio and winding angle.  相似文献   

6.
This paper studies a multiaxial fatigue crack mode and a fatigue life of Ti–6Al–4V. Load controlled fatigue tests at room temperature were carried out using a hollow cylinder specimen under multiaxial loading with principal stress ratio λ equal to 0, 0.4, 0.5 and 1.0 and loading ratio R kept constant and equal to 0. λ is defined as λ = σ2/σ1, where σ1 and σ2 are maximum and intermediate/minimum principal stresses, respectively. Here, the test at λ = 0 is a uniaxial loading test and that at λ = 1.0 an equi-biaxial loading test. A testing machine employed was a newly developed multiaxial fatigue testing machine which can apply push-pull and reversed torsion loading with inner pressure into the hollow cylinder specimen. Based on the obtained results in this study, multiaxial fatigue properties are examined, where the fatigue life evaluation and the crack mode are discussed. The fatigue life is reduced with an increase of λ, due to cyclic ratcheting and crack mode in multiaxial loading. The crack mode is also affected by the surface condition resulting from cut-machining.  相似文献   

7.
This paper studies a multiaxial fatigue crack mode and a fatigue life of Ti–6Al–4V. Load controlled fatigue tests at room temperature were carried out using a hollow cylinder specimen under multiaxial loading with principal stress ratio λ equal to 0, 0.4, 0.5 and 1.0 and loading ratio R kept constant and equal to 0. λ is defined as λ = σ2/σ1, where σ1 and σ2 are maximum and intermediate/minimum principal stresses, respectively. Here, the test at λ = 0 is a uniaxial loading test and that at λ = 1.0 an equi-biaxial loading test. A testing machine employed was a newly developed multiaxial fatigue testing machine which can apply push-pull and reversed torsion loading with inner pressure into the hollow cylinder specimen. Based on the obtained results in this study, multiaxial fatigue properties are examined, where the fatigue life evaluation and the crack mode are discussed. The fatigue life is reduced with an increase of λ, due to cyclic ratcheting and crack mode in multiaxial loading. The crack mode is also affected by the surface condition resulting from cut-machining.  相似文献   

8.
《Composites Part A》2002,33(11):1539-1547
Crack propagation in single edge notched tensile specimens of isotactic polypropylene reinforced with short E-glass fibres has been investigated under both fatigue and creep loading conditions. Fatigue crack propagation (FCP) experiments have been performed at three different frequencies (0.1, 1, 10 Hz) and at a mean applied tensile load of 1200 N. Isothermal creep crack propagation (CCP) tests have been conducted under a constant tensile applied load of 1200 N at various temperatures in the range from 32 to 60 °C. Analysis of FCP data allowed an estimation of the pure fatigue and pure creep components of the crack velocity under the adopted cyclic loading conditions. Crack growth at low frequencies (0.1 and 1 Hz) is mainly associated with a non-isothermal creep process. At higher frequency (10 Hz), the pure fatigue contribution appeared more pronounced. Finally, the comparison of FCP and CCP as a function of the mean applied stress intensity factor confirmed the major contribution of creep crack growth during FCP process at low frequencies.  相似文献   

9.
This paper is focused on the effect of sea water corrosion on the gigacycle fatigue strength of a martensitic–bainitic hot rolled steel R5 used for manufacturing off-shore mooring chains for petroleum platforms in the North Sea. Crack initiation fatigue tests in the regime of 106 to 1010 cycles were carried out on smooth specimens under three different environment conditions: (i) without any corrosion (virgin state) in air, (ii) in air after pre-corrosion, and (iii) in-situ corrosion-fatigue under artificial sea water flow. A drastic effect of sea water corrosion was found: the median fatigue strength beyond 108 cycles is divided by 5 compared to virgin state specimens. The crack initiation sites were corrosion pits caused by pre-corrosion or created during corrosion-fatigue under sea water flow. Furthermore some sub-surface and internal crack initiations were observed on specimens without any corrosion (virgin state). Crack propagation curves were obtained in mode I in air and under sea water flow. Calculation of the stress intensity factor at the tip of cracks emanating from hemispherical surface pits combined with the Paris–Hertzberg–Mc Clintock crack growth rate model showed that fatigue crack initiation period represents most of the fatigue life in the VHCF regime. Additional original experiments have shown physical evidences that the fatigue strength in the gigacycle regime under sea water flow is mainly governed by the corrosion process with a strong coupling between cyclic loading and corrosion.  相似文献   

10.
Duplex stainless steels (DSS) fatigue crack propagation resistance is strongly affected by both microstructure and environment. In this work, environment influence on the fatigue crack propagation in a 22 Cr 5 Ni duplex and in a 25 Cr 7 Ni superduplex stainless steels is investigated considering three different stress ratios (R = Kmin/Kmax = 0.1, 0.5, 0.75). Tests are performed according to ASTM E 647 standard, both in air and under hydrogen charging conditions (0.1 M H2SO4 + 0.01 M KSCN aqueous solution, ?0.9 V/SCE). Crack fracture surfaces are extensively analysed by means of a scanning electron microscope. Furthermore, crack paths are investigated by means of a crack profile analysis performed through a light optical microscope. Nickel coated fracture surface sections obtained for constant ΔK values are considered in order to analyse the loading (R values) and environment influence on fatigue crack paths.  相似文献   

11.
Four cracked longerons, containing a total of eight cracks, were provided for study. Cracked regions were cut from the longerons. Load was applied to open the cracks, enabling crack surface examination. Examination revealed that crack propagation was driven by fatigue loading in all eight cases. Fatigue crack initiation appears to have occurred on the top edge of the longerons near geometric changes that affect component bending stiffness. Additionally, metallurgical analysis has revealed a local depletion in alloying elements in the crack initiation regions that may be a contributing factor. Fatigue crack propagation appeared to be initially driven by opening-mode loading, but at a crack length of approximately 0.5 in. (12.7 mm), there is evidence of mixed-mode crack loading. For the longest cracks studied, shear-mode displacements destroyed crack-surface features of interest over significant portions of the crack surfaces.  相似文献   

12.
The paper presents the fatigue test results of rectangular cross-section specimens made of 10HNAP (S355J2G1W) steel. The specimen height to width ratio was 1.5. The tests under bending with torsion were performed for the following ratios of bending to torsional moments MaB/MaT = 0.47, 0.94, 1.87 and the loading frequency 26.5 Hz. Nominal stresses were chosen for the equivalent stress according to the Huber-Mises hypothesis equal to 360 MPa. The tests were performed in the high cycle fatigue regime for the stress ratio R = −1 and phase shift between bending and torsion loading equal to ϕ = 0 and 90°. Crack initiation and propagation phases were observed on the specimen surface using the optical microscope (magnification 20×) with an integrated digital camera. The test results for the fatigue crack growth rate versus the stress intensity factor range for mode I and mode III have been described with the Paris equation.  相似文献   

13.
Geothermal turbines of 110 MW were installed in the Federal Electricity Commission in Cerro Prieto Mexico, which operating time exceeds 150,000 h. Therefore, the critical components which determine the useful life of the turbine should be evaluated to determine the rehabilitation or replacement of them. The critical components are the blades of the last stage in the steam turbine. It has been observed that different blades of the turbine of 110 MW with cracks presented corrosion products, which resulted in a failure for corrosion fatigue mechanisms. In this paper, it was studied the effect of crack propagation produced in a geothermal turbine blade of the last stage, L-0, which is made of stainless steel AISI 410 exposed to corrosion under a sea water solution. The corrosion phenomena including localized corrosion suffered by the cracking sample were studied through the electrochemical noise technique in current and potential and polarization curves. The tests were conducted on pieces of blades subjected to fatigue. The results indicated that the exposure to the corrosion solution modified the width and the length of the cracks. Using a scanning electron microscopy (SEM), the surface of the crack was observed, showing that the corrosion mechanism produced a significant increment of the velocity of crack propagation and therefore, a decrement of the useful life of the material. This research will allow us to understand the corrosion process in addition to estimate the useful life of the blades when they are subjected to load cycles.  相似文献   

14.
In this work, fatigue crack propagation in thin-walled aluminium alloy structure with two friction stir welded T joints has been simulated numerically. Crack propagation in stiffened part of the structure between two friction stir welded T joints is analysed by using the eXtended Finite Element Method (XFEM), including software ABAQUS, as well as MORFEO, for modelling and results display. Tensile fatigue loading is applied, with stress ratio R = 0, and maximum stress σmax = 10 MPa. Material properties (Al 2024-T351, as used in aeronautical industry) in different welded joints zones are adopted from available literature data. Following results are obtained by numerical analysis: stress–strain and displacement state in the structure, position of the crack tip and value of stress intensity factor for every crack propagation step, as well as the structural life estimation, i.e. number of load cycles, N, also for each crack propagation step. Using these results the number of cycles at which the crack starts to propagate in an unstable manner is predicted.  相似文献   

15.
The effect of stress ratio (R) on fatigue lifetime of a cast Ti–45Al–8.0Nb–0.2W–0.2B–0.1Y (at.%) alloy was investigated at 750 °C. Fatigue tests with various stress ratios ranging from 0.1 to 1 were performed using a mini servo-hydraulic fatigue machine inside a chamber of scanning electron microscope (SEM). Fatigue crack initiation and propagation behavior was studied by in situ SEM observation and fatigue fracture mode was examined by fracture surface analysis. It is found that fatigue lifetime shows a reversed S-type curve with the increase of stress ratio. At R ranging from 0.1 to 0.4, creep–fatigue interaction dominates the fatigue lifetime and the fatigue lifetime reaches its minimum value at R = 0.3. At R ranging from 0.4 to 1, creep damage dominates the fatigue lifetime and the fatigue lifetime exhibits inverse proportional relation with R. Meanwhile, with the increase of stress ratio, the fatigue crack initiation sites transform from lamellar interface at R = 0.1, to lamellar interface and colony boundary at R = 0.3, and to lamellar colony boundary at R = 0.5. Accordingly, the fatigue fracture mode transforms from transgranular cracking, to transgranular and intergranular cracking, and to intergranular cracking.  相似文献   

16.
Incident involving failures of 6 months old API 5L X42 (NPS8) and SDR 17, 125 mm medium density polyethylene pipe (MDPE) supplying natural gas to an industrial customer has caused serious 7 h supply disruption. Study was performed to identify the most probable cause of the pipes failures. The study conducted by reviewing the existing design and construction data, visual physical inspection, pipe material analysis, structural analysis using NASTRAN and Computational Fluid Dynamics analysis (CFD) using FLUENT. Investigations revealed that high pressure water jet from leaked water pipe had completely mixed with surrounding soil forming water soil slurry (high erosive properties) formed at a close vicinity of these pipes. Continuous impaction of this slurry upon the API 5L X42 pipe surface had caused losses of the pipe coating materials. Corrosion quickly ensued and material loss was rapid because of the continuous erosion of oxidised material that occurred simultaneously. This phenomenon explains the rapid thinning of the steel pipe body which later led to its failure. Metallurgical study using photomicrograph shows that the morphology of the steel material was consistent and did not show any evidence of internal corrosion or micro fractures. The structural and CFD simulation results proved that the location, rate and the extent of erosion failures on the pipe surfaces can be well predicted, as compared with actual instances.  相似文献   

17.
This paper is focused on the VHCF behavior of aeronautical titanium alloy under tensile and torsion fatigue loadings. Tensile tests were carried out with two different stress ratios: R = −1 and R = 0.1. Both surface and subsurface crack initiations were observed. In the case of subsurface crack initiation several fatigue life controlling mechanisms of crack initiation were found under fully-reversed loading conditions: initiation from (1) strong defects; (2) ‘macro-zone’ borders; (3) quasi-smooth facets and (4) smooth facets. Tests with stress ratio R = 0.1, have shown that initiation from the borders of ‘macro-zones’ becomes the dominant crack initiation mechanism in presence of positive mean stress. Like for the tensile results, surface and subsurface crack initiations were observed under ultrasonic torsion in spite of the maximum shear stress location on the specimen surface. But the real reason for the subsurface crack initiation under torsion was not found.  相似文献   

18.
Crack failure of a 36 inch high pressure gas pipe observed during regular inspection of a station has been investigated and the results are presented in this paper. The crack, approximately one meter long, was initiated from a notch inside the hot tapped hole in a pipeline installed about 30 years ago. The study was conducted by reviewing the design history and construction data, visual inspection, pipe material characterization, stress and modal analysis by using finite element method. Investigations revealed that the valve, directly connected to the split tee, faced large dynamic periodic forces due to a pressure drop between two pipelines. Metallurgical evaluation of the pipe material by optical microscope and fractography of the crack surface by scanning electron microscopy indicated the presence of elongated inclusions in the steel microstructure together with some indications of fatigue fracture as a poorly formed sawtooth profile. Based on dynamic analysis, it was found that the first mode shape, the maximum displacement and, therefore, the maximum stress were exactly situated within the crack initiation zone. It was concluded that the notch effect in the hot tapped hole, the position of the supports under the split tee and the presence of a large periodic stress were responsible for the initiation and fatigue propagation of the crack in the gas pipe.  相似文献   

19.
Fatigue crack growth rates have been experimentally determined for the superalloy GH2036 (in Chinese series) at an elevated temperature of 550 °C under pure low cycle fatigue (LCF) and combined high and low cycle fatigue (CCF) loading conditions by establishing a CCF test rig and using corner-notched specimens. These studies reveal decelerated crack growth rates under CCF loading compared to pure LCF loading, and crack propagation accelerates as the dwell time prolongs. Then the mechanism of fatigue crack growth at different loadings has been discussed by using scanning electron microscope (SEM) analyses of the fracture surface.  相似文献   

20.
A series of fatigue experiments was performed in order to investigate the effect of the R-ratio on the fatigue/fracture behavior of adhesively-bonded pultruded GFRP double cantilever beam joints. Constant amplitude fatigue experiments were carried out under displacement control with a frequency of 5 Hz in ambient laboratory conditions. Three different R-ratios were applied: R = 0.1, R = 0.5 and R = 0.8. The crack length was determined by means of crack gages and a dynamic compliance method. The dominant failure mode was a fiber-tear failure that occurred in the mat layers of the pultruded laminates. The depth of the crack location significantly affected the energy dissipated for the fracture under cyclic loading. Short-fiber and roving bridging increased the fracture resistance during crack propagation. Fatigue crack growth curves were derived for each R-ratio and each observed crack path location. The fatigue threshold and slope of the fatigue crack growth curve significantly increased with increased R-ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号