首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
This paper presents the combustion characteristics of a naturally aspirated spark ignition engine, intended for installation in vehicles, fueled with different hydrogen and methane blends. The experimental tests were carried out in a wide range of speeds at equivalence ratios of 1, 0.8 and 0.7 and at full load. The ignition timing was maintained for each speed, independently of the equivalence ratio and blend used as fuel. Four methane-hydrogen blends were used. In-cylinder pressure, mass fraction burned, heat released and cycle-by-cycle variations were analyzed as representative indicators of the combustion quality. It was observed that hydrogen enrichment of the blend improve combustion for the ignition timing chosen. This improvement is more appreciable at low speeds, because at high speeds hydrogen effect is attenuated by the high turbulence. Also, hydrogen addition allowed the extension of the LOL, enabling the engine to run stable in points where methane could not be tested. The main inconvenience detected was the high NOx emissions measured, especially at stoichiometric conditions, due mainly to the increment in the combustion temperature that hydrogen produces.  相似文献   

2.
This paper shows the results of the tests carried out in a naturally aspirated vehicle spark ignition engine fueled with different hydrogen and methane blends. The percentage of hydrogen tested was up to 50% by volume in methane. The tests were carried out in a wide range of speeds with the original ignition timing of the engine. Also, lean equivalence ratios were proved. Just the fuel injection map was modified for each fuel blend and equivalence ratio tested. In this paper, the results of thermal efficiency and pollutant emissions achieved at full load have been compared with the corresponding gasoline test results. The best balance between thermal efficiency and pollutant emissions was observed with the 30% hydrogen and 70% methane fuel blend.  相似文献   

3.
The work reported here pertains to some of the computer simulation models developed for hydrogen fueled spark ignition (SI) engines. The engine combustion process is modeled by using a semi-empirical turbulent flame speed expression. This combustion model has been employed to account for the hydrogen-air combustion process over a wide range of stoichiometric variables for the Varimax engine operating at various speeds and compression ratios. Based on the computed results, graphs showing the variation of combustion crank angle and flame speed with fuel-air equivalence ratio, engine speed, compression ratio etc., have been plotted.  相似文献   

4.
The combustion process of a four-stroke optically accessible single cylinder Port Fuel Injection spark ignition (PFI SI) engine was experimentally investigated. It was fueled with two methane/hydrogen blends. The in-cylinder pressure and the related data were analyzed as indicators of the combustion quality. 2D-digital imaging measurements were performed to evaluate the flame propagation. UV–visible spectroscopy allows to characterize the combustion by means of the detection of OH* and CH*. The exhaust was characterized using conventional analyzers. For the methane/hydrogen blends the indicated data suggests an increase of the thermal efficiency and a decrease of the combustion duration with the increase of the hydrogen fraction. The optical results highlight a more homogeneous mixture that increases the combustion reaction rate and provides a more uniform and rapid flame propagation. On the other hand, high NOx emissions were measured likely because of the higher combustion temperature due to hydrogen addition.  相似文献   

5.
A numerical study on the in-cylinder flame-vortex interaction of gaseous spark ignited engine fueled with methane/carbon dioxide is carried out by means of large-eddy method. Evolution of in-cylinder turbulence in charge phase and flame-vortex interaction during combustion process is analyzed in great detail. It's found out that the large scale coherent structures are transformed into homogeneous small scale vortexes during the intake and compression stroke. The strong vortex cores are generated by interaction between flame and in-cylinder background turbulence. Those generated vortex cores wrinkle flame surface and augment turbulent flame speed. The contra-rotation between the two vortexes of vortex-pair in the unburned area results in the appearance of large scale flame wrinkles, which is because the vortex-pair movement leads to the local entrainment and hence stretchs of the flame surface. With the increase of volume fraction of carbon dioxide in the gases, the turbulent flame speed is decreased, the effect of vortex pair on the flame structure is weakened, and the level of the flame wrinkling is decreased correspondingly.  相似文献   

6.
A study of alternate fuels leads to hydrogen as a candidate fuel for the future. Its remarkable properties provide the potential of high thermal efficiency at part load by operating the engine unthrottled with lean mixtures. The problems of pre-ignition and backfiring could be overcome at a wide range of operation by providing a cold spark plug with a narrow gap and by keeping combustion chamber walls clean. Hydrogen operation of spark-ignited engines has been found to be very profitable at low equivalence ratios both from the point of view of increased thermal efficiency and reduced nitrogen oxides emissions.  相似文献   

7.
Review is made of the positive features and the current limitations associated with the use of hydrogen as a spark ignition engine fuel. It is shown that hydrogen has excellent prospects to achieve very satisfactory performance in engine applications that may be superior in many aspects to those with conventional fuels. A number of design and operational changes needed to effect the full potential of hydrogen as an engine fuel is outlined. The question whether hydrogen can be manufactured abundantly and economically will remain the limiting factor to its widespread use as an S.I. engine fuel in the future.  相似文献   

8.
The current work investigates a coke oven gas fueled spark ignition (SI) engine from the perspective of the first and second laws in order to understand the energy conversion performance of fuels and achieve highly efficient utilization. A detailed energy and exergy analysis is applied to a quasi-dimensional two-zone spark ignition engine model which combines turbulence flame propagation speed model at 1500 rpm by changing gas fuel types, compression ratio, load and ignition timing. It was found that the irreversibility of methane is the maximum and that of syngas is the minimum among the three different fuels. The irreversibility in the combustion process of a coke oven gas fueled SI engine is reduced when the compression ratio or the throttle valve opening angle is increased and the ignition timing is delayed. Increasing the compression ratio and delaying the ignition timing can improve the first and second law efficiency and reduce the brake specific fuel consumption (BSFC). The power performance and fuel economy are good and the energy is also used effectively when the compression ratio is 11, the throttle angle is 90% and the ignition time is ?10° CA ATDC respectively.  相似文献   

9.
In spite of its known shortcomings as a fuel for spark ignition engines, acetylene has been suggested as a possible alternative to petroleum-based fuels since it can be produced from non-petroleum resources (coal, limestone and water). Therefore, acetylene was evaluated in a single-cylinder engine to investigate performance and emission characteristics with special emphasis on lean operation for NOx control. Testing was carried out at constant speed, constant airflow and MBT spark timing. Equivalence ratio and compression ratio were the primary variables. The engine operated much leaner when fuelled with acetylene than with gasoline. With acetylene, the engine operated at equivalence ratios as lean as 0·53 and 0·43 for compression ratios of 4 and 6, respectively. However, the operating range was very limited. Knock-induced preignition occurred either with compression ratios above 6 or with mixtures richer than 0·69 equivalence ratio. Both the indicated thermal efficiency and power output were less for acetylene fuelling than for gasoline. Acetylene combustion occurred at sufficiently lean equivalence ratios to produce very low NOx and CO emissions. However, when the low NOx levels were achieved hydrocarbon control was not improved over that with gasoline. Despite the potential for NOx control demonstrated in this study of acetylene fuelling, difficulties encountered with engine knock and preignition plus well-known safety problems (wide flammability limits and explosive decomposition) associated with acetylene render this fuel impractical for spark ignition engines.  相似文献   

10.
In this work, a single cylinder conventional spark ignition engine was converted to operate with hydrogen using the timed manifold fuel injection technique. A solenoid operated gas injector was used to inject hydrogen into the inlet manifold at the specified time. A dedicated electronic circuit developed for this work was used to control the injection timing and duration. The spark timing was set to minimum advance for best torque (MBT). The engine was operated at the wide-open throttle condition. For comparison of results, the same engine was also run on gasoline.The performance and emission characteristics with hydrogen and gasoline are compared. From the results, it is found that there is a reduction of about 20% in the peak power output of the engine when operating with hydrogen. The brake thermal efficiency with hydrogen is about 2% greater than that of gasoline. A lean limit equivalence ratio of about 0.3 could be attained with hydrogen as compared to 0.83 with gasoline. CO, CO2 and HC emissions were negligible with hydrogen operation. However, for hydrogen operation, NOx emission was four times higher than that of gasoline at full load power. The best ignition timing for hydrogen was much retarded when compared to gasoline. The effect of hydrogen injection pressure was also studied and no specific changes were observed. The effect of operating speed was also studied.  相似文献   

11.
Concerns with the environment and energy security have increased interest in phasing out fossil fuels in the automotive industry, as it transitions from conventional internal combustion engines (ICE) to electric and fuel cell powertrains. During this transition, ethanol is of particular interest as a renewable fuel option in ICE, despite drawbacks compared to gasoline. Adding hydrogen to ethanol could remedy the disadvantages associated with ethanol, while maintaining the benefits of using renewable fuels. There is a gap in the literature of both experimental and numerical studies considering hydrogen addition in turbocharged ethanol engines. Therefore, this paper presents an experimental and numerical study of a turbocharged ethanol engine operating with hydrogen enrichment at stoichiometric conditions under boosted conditions. It was concluded that hydrogen addition allowed spark ignition engines to achieve lower brake specific energy consumption, better performance, and lower emissions. Thus, after proper calibration, a simulation model was created and shown to be a suitable tool to predict engine performance of a spark ignition engine operating with hydrogen enrichment and reduce the overall number of experimental tests needed to tune engines operating with this fuel blend. Finally, some operating strategies are recommended based on these findings.  相似文献   

12.
《Applied Thermal Engineering》2007,27(2-3):358-368
This study consists of two cases: (i) The experimental analysis: Ethanol obtained from biomass can be used as a fuel in spark ignition engines. As renewable energy source ethanol, due to the high octane number, low emissions and high engine performance is preferred alternative fuel. First stage of this study, ethanol–unleaded gasoline blends (E10, E20, E40 and E60) were tested in a single cylinder, four-stroke spark ignition and fuel injection engine. The tests were performed by varying the ignition timing, relative air–fuel ratio (RAFR) and compression ratio at a constant speed of 2000 rpm and at wide open throttle (WOT). Effect of ethanol–unleaded gasoline blends and tests variables on engine torque and specific fuel consumption were examined experimentally. (ii) The mathematical modeling analysis: The use of ANN has been proposed to determine the engine torque and specific fuel consumption based on the ignition timing, RAFR and compression ratio at a constant speed of 2000 rpm and at WOT for different fuel densities using results of experimental analysis. The back-propagation learning algorithm with two different variants and logistic sigmoid transfer function were used in the network. In order to train the neural network, limited experimental measurements were used as training and test data. The best fitting training data set was obtained Levenberg–Marquardt (LM) algorithm with five neurons in the hidden layer, which made it possible to the engine torque and specific fuel consumption with accuracy at least as good as that of the experimental error, over the whole experimental range. After training, it was found the R2 values are 0.999996 and 0.999991 for, the engine torque and specific fuel consumption, respectively. Similarly, these values for testing data are 0.999977 and 0.999915, respectively. As seen from the results of mathematical modeling, the calculated engine torque and specific fuel consumption are obviously within acceptable uncertainties.  相似文献   

13.
Combustion knock is one of the primary constraints limiting the performance of spark-ignition hydrogen fuelled internal combustion engines (H2-ICE) as it limits the torque output and efficiency, particularly as the equivalence ratio nears stoichiometric operation. Understanding the characteristic of combustion knock in a H2-ICE will provide better techniques for its detection, prevention and control while enabling operation at conditions of improved efficiency.

Engine studies examining combustion knock characteristics were conducted with hydrogen and gasoline fuels in a port-injected, spark-ignited, single cylinder cooperative fuel research (CFR) engine. Characterization of the signals at varying levels of combustion knock from cylinder pressure and a block mounted piezoelectric accelerometer were conducted including frequency, signal intensity, and statistical attributes. Further, through the comparisons with gasoline combustion knock, it was found that knock detection techniques used for gasoline engines, can be applied to a H2-ICE with appropriate modifications. This work provides insight for further development in real time knock detection. This would help in improving reliability of hydrogen engines while allowing the engine to be operated closer to combustion knock limits to increase engine performance and reducing possibility of engine damage due to knock.  相似文献   


14.
根据化学反应动力学原理,建立了火花点火武变组分煤层气发动机CO的生成模型,该模型由碳氢燃料高温氧化生成CO以及CO在火焰中及火焰后氧化两部分组成。以MATLAB程序设计语言为应用平台,对CO的瞬时排放量进行了模拟计算,得到了发动机缸内CO的变化规律。同时,计算和分析了煤层气组分变化对CO排放的影响,并与实验结果进行了比较。研究结果证实.所建立的CO排放模型是合理的。理论和试验结果表明,提高煤层气中的甲烷浓度和发动机的负荷有利于降低发动机的CO排放量。  相似文献   

15.
A previously developed and validated zero-dimensional, multi-zone, thermodynamic combustion model for the prediction of spark ignition (SI) engine performance and nitric oxide (NO) emissions has been extended to include second-law analysis. The main characteristic of the model is the division of the burned gas into several distinct zones, in order to account for the temperature and chemical species stratification developed in the burned gas during combustion. Within the framework of the multi-zone model, the various availability components constituting the total availability of each of the multiple zones of the simulation are identified and calculated separately. The model is applied to a multi-cylinder, four-stroke, turbocharged and aftercooled, natural gas (NG) SI gas engine running on synthesis gas (syngas) fuel. The major part of the unburned mixture availability consists of the chemical contribution, ranging from 98% at the inlet valve closing (IVC) event to 83% at the ignition timing of the total availability for the 100% load case, which is due to the presence of the combustible fuel. On the contrary, the multiple burned zones possess mainly thermomechanical availability. Specifically, again for the 100% load case, the total availability of the first burned zone at the exhaust valve opening (EVO) event consists of thermomechanical availability approximately by 90%, with similar percentages for all other burned zones. Two definitions of the combustion exergetic efficiency are used to explore the degree of reversibility of the combustion process in each of the multiple burned zones. It is revealed that the crucial factor determining the thermodynamic perfection of combustion in each burned zone is the level of the temperatures at which combustion occurs in the zone, with minor influence of the whole temperature history of the zone during the complete combustion phase. The availability analysis is extended to various engine loads. The engine in question is supplied with increasingly leaner mixtures as loads rise in order to keep the emitted nitrogen oxides (NOx) low. Therefore, in-cylinder combustion temperatures are reduced, resulting in increased destruction of availability due to combustion and reduced availability losses due to heat transfer with the cylinder walls, when expressed as percentages of the fuel chemical availability. Specifically, when engine load increases from 40% to 100% of full load, with the relative air–fuel ratio also increasing from 1.56 to 1.83, the destroyed availability due to combustion rises from 14.19% to 15.02% of the fuel chemical availability, while the respective percentage of the cumulative availability loss due to heat transfer decreases from 13.37% to 9.05%.  相似文献   

16.
This work demonstrated the first-ever cold-start operation of an ammonia (NH3)-fueled four-cylinder spark ignition engine with an on-board fuel reformer, applying autothermal reforming. In this system, an electrically heated NH3-air mixture was provided to a reforming catalyst and approximately 3 s was found to elapse between the start of engine rotation and the onset of combustion. Stable fast idle operation in conjunction with a cold start was realized with a H2-to-NH3 molar ratio of 2:1. Nearly zero NH3 emissions were achieved during cold start and fast idle until the engine warmed up, by adsorbing unburned NH3 passing through a three-way catalyst before the catalyst was sufficiently warmed up. The NH3 adsorption capacity of this system could be regenerated during the engine warm-up when the engine was running under lean conditions.  相似文献   

17.
《能源学会志》2014,87(2):102-113
In this study, combustion and emissions characteristics of a turbocharged compression ignition engine fueled with dimethyl ether (DME) and biodiesel blends are experimentally investigated. The effects of nozzle parameter on combustion and emissions are evaluated. The result shows that with the increase of DME proportion, ignition delay, the peak in-cylinder pressure, peak heat-release rate, peak in-cylinder temperature decrease, and their phases retard. Compared to the nozzle 6 × 0.40 mm, the peak cylinder pressure and peak heat-release rate are higher with nozzle 6 × 0.35 mm, and their phases are advanced. Increased DME proportion in fuel blends causes greater differences. Compared to biodiesel, NOx emissions of blends significantly decrease; HC emissions and CO emissions increase slightly. DME–biodiesel blends can be used as an alternative in a turbocharged CI engine. To obtain low NOx emissions and a soft engine operation, for high DME proportion blended fuels, nozzle of 6 × 0.40 mm adopted.  相似文献   

18.
In this study, performance of a diesel engine operated with Jatropha and Palm biodiesel blends at high idling conditions has been evaluated. The result obtained from experiment elucidate that, at all idling modes HC and CO emissions of both blends decreases, however, NOx emissions increases compared to pure diesel fuel. Jatropha biodiesel has higher viscosity compared to Palm biodiesel, which might have degraded the spray characteristics and caused slightly improper mixing which might have led to slightly incomplete combustion, thus at both idling conditions, Jatropha blends emitted higher CO and HC compared to Palm biodiesels. Compared to diesel fuel, CO emissions were 5.9–9.7%, 17.6–22.6%, 23.5–29%, 2.9–6.4%, 5.9–14.5% and 11.8–17.74% less, HC emissions were 10.3–11.5%, 24.13–30.76%, 34.5–39%, 6.9–7.7%, 26–27% and 31–35% less and NOx emissions were 8.3–9.5%, 14–15%, 22–25%, 5–7.14%, 10–11.3% and 17–18% more respectively for 5, 10 and 20% blends of Palm and Jatropha biodiesel. Compared to diesel fuel, at high idling conditions brake specific fuel consumption all Palm and Jatropha biodiesel–diesel blends increased. Compared to diesel fuel, BSFC were 1.14–1.35%, 2.28–2.96%, 7.1–8.35%, 2.28–2.69%, 3.98–5.39% and 8.83–9.29% more respectively for 5, 10 and 20% blends of Palm and Jatropha biodiesel.  相似文献   

19.
Availability analysis is applied to cylinder of a spark ignition engine during the combustion process under surrogate fuels (iso-octane, n-heptane, toluene, and methyl-cyclohexane) for gasoline using a two-zone combustion model. Special attention is given to identification and quantification of irreversibility of combustion process basing on the surrogate fuels. This is particularly important since the identification and quantification of irreversibility are not identified in traditional first-law analysis. In identifying these processes, the main differences between second- and first-law analyses are also highlighted. During the combustion process, the availability destroyed by combustion is about 18.9%, and the availability destroyed by the heat transfer is about 12.0%. The survey also reveals that during the whole combustion process shortened combustion duration and postponed ignition are both helpful to reduce availability destruction.  相似文献   

20.
In this study, the performance of different spark plugs was tested with varied spark gap sizes in a spark-ignited engine. Gasoline fuel was enriched with hydrogen and methanol to evaluate how much they affect the performance of the engine. The engine tests were performed with a four-stroke, single-cylinder, naturally aspirated, variable compression ratio (VCR) spark ignition engine. 1500 rpm engine speed and MBT for spark timing were applied throughout all experiments. Iridium, platinum and conventional (copper) spark plugs were tested using 3 different spark plug gaps (SPG) (0.6 mm, 0.8 mm, 1 mm). Depending on the experimental condition, hydrogen was added with 3 l/min of flow rate and methanol was used with 10% of volume fraction in the total liquid fuel. As for performance criteria, brake power (BP) and brake specific fuel consumption (BSFC) values were obtained from the test engine. According to the findings, platinum and iridium spark plugs had shown better performance than conventional spark plugs. The increment of SPG size improved the performance of the engine, too. On the other hand, despite methanol addition to gasoline fuel reduced performance, this loss could be compensated by hydrogen enrichment. Additionally, multiple linear regression (MLR) technique was applied through experimental results to obtain a linear relationship between explanatory variables (inputs) and response variables (outputs). An MLR model was set with four selected input variables (spark plug type, hydrogen flow rate, methanol ratio, and spark gap) to estimate BP and BSFC. Prediction equations showed that experimentally obtained results were in good agreement with MLR results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号