首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
连铸法是一种制备具有均匀孔洞分布的大尺寸藕状多孔材料的新工艺.利用自行开发的GASAR连铸装置,成功拉制出了15 mm的藕状多孔Cu连铸试样,并研究了下拉速率对孔隙率及气孔直径的影响.结果表明:随着下拉速率的增加,连铸试样中气孔尺寸分布逐渐变均匀;下拉速率对孔隙率的影响不大,而气孔直径随下拉速率的增加而降低.  相似文献   

2.
金属-气体共晶定向凝固(Gasar)是制备藕状多孔金属的新工艺,利用自行研制的Gasar装置,成功地制备了不同纯氧分压下的藕状多孔银试样,研究了氧气分压对藕状多孔银气孔形貌(气孔率、气孔尺寸和分布、气泡形核)的影响。结果表明:氧气分压对气孔形貌影响十分显著。随着氧气压力的增加,气孔率增大而平均气孔直径减小。  相似文献   

3.
在金属/气体共晶定向凝固工艺(Gasar)中,气体压力、过热度以及凝固速率是影响藕状多孔金属结构的最重要参数。建立了一个描述Gasar工艺过程的传热、传质、气孔形核、生长、合并及气孔与固相的协同生长的三维非稳态理论模型。并且采用有限差分的方式,实现了定向凝固铸造法Gasar工艺过程中藕状多孔结构形成及演变的计算机仿真,揭示了气体压力和凝固速率对藕状多孔金属最终结构参数的影响。基于Mg-H系的模拟与相应试验结果吻合较好,验证了所建仿真模型的合理性。  相似文献   

4.
Selective laser sintering (SLS) technique is capable of rapidly fabricating customized implants with porous structure. A simple encapsulation process was developed to coat 316L stainless steel (316L SS) powder with ethylene-vinyl acetate copolymer (EVA). Subsequently, porous 316L SS was prepared by SLS preforming of EVA-coated metal powders, debinding and sintering in hydrogen atmosphere. The effects of processing parameters on pore characteristics and mechanical properties were analyzed. The results indicate that the porosity of green body mainly depends on laser energy density, while the pore features and mechanical properties of sintered specimens are largely dominated by sintering temperature. After sintering at 1100–1300 °C, the average pore size and porosity are 160–35 μm and 58–28%, respectively. In addition, the elastic modulus and compressive yield strength are 1.58–6.64 GPa and 15.5–52.8 MPa, respectively. It is revealed that the pore structural parameters and mechanical properties of the as-sintered porous 316L SS can be controlled readily to match with those of cancellous bone by modification of SLS processing parameters and subsequent sintering temperature.  相似文献   

5.
采用统计分析方法,通过孔径分布、气孔最邻近距离和局部气孔率定量分析定向凝固藕状多孔镁横截面上的气孔分布特征,并在此基础上分析气压对藕状多孔镁气孔分布的作用规律。结果表明:纯氢条件下气压越高,孔尺寸分布越趋于一致、孔位置和气孔结构单元分布越均匀;氢气分压一定,选择合适的氩气分压可使熔体共晶凝固时,孔尺寸、孔位置和气孔结构单元的分布最均匀。  相似文献   

6.
《Acta Materialia》2007,55(10):3437-3451
Porous NiTi alloys with different porosities were fabricated by capsule-free hot isostatic pressing (CF-HIP) with ammonium acid carbonate (NH4HCO3) as a space-holder. The microstructure and porosity of porous NiTi produced with different NH4HCO3 contents and sintering temperatures were determined. Two different creep expansion models are used to explain the pore expansion mechanism during the sintering process, which involves slow and continuous reduction of the argon pressure at high temperatures. When the NH4HCO3 content is 30 wt.% and the sintering temperature is 1050 °C, an ideal porous NiTi alloy with 48 vol.% porosity and circular pores (50–800 μm) is obtained. Compression tests indicate that the porous NiTi alloys with 21–48% porosity possess not only lower Young’s moduli of 6–11 GPa (close to that of human bones) but also higher compression strength and excellent superelasticity. Cell cultures reveal that the porous NiTi prepared here has no apparent cytotoxicity. The porous materials are thus promising biomaterials in hard tissue replacements.  相似文献   

7.
通过求解凝固界面前沿熔体中的溶质浓度场方程,从理论上建立了一个用于描述连铸法Gasar工艺中的工艺参数对藕状多孔金属结构平均孔径、孔间距以及气孔率影响的理论模型,并将抽拉速率对多孔金属结构的影响的理论预测结果与文献中相应实验结果进行比较,结果表明,理论预测结果与实验结果吻合较好.预测结果显示,平均孔径r_g和孔间距L随抽拉速率v的升高不断降低,但气孔率变化较小,它们之间存在着简单关系为:r_g~(1.72)·v=A和L~(1.72)·v=B(其中,A和B都是取决于气体压力pH_2和pA_r以及熔体温度T的常数)。  相似文献   

8.
A single-mold Gasar technique was developed to produce lotus-type porous micro-channel copper with uniform porous structure. In this paper the effect of withdrawal rate on the solid/liquid interface morphology and the corresponding porous structure was systematically investigated, especially the pore morphology, pore growth direction, porosity, and pore diameter of porous copper ingots. In addition, a temperature field simulation was carried out based on ProCast software to investigate the shape and movement velocity of the solidifying solid/liquid interface. The experimental results show that the solidification interface changes from convex to planar, then to concave shape with an increase in withdrawal rate. The average porosities of copper ingots are constant and independent of the withdrawal rate. The average pore diameter decreases with an increase in withdrawal rate.  相似文献   

9.
采用定向凝固法,在氢气压力为0.2 MPa,熔体温度为1 200 ℃的条件下制备d 45 mm×120 mm的藕状多孔纯铜棒材,研究藕状多孔金属垂直于气孔方向的压缩变形过程及其影响因素,分析压缩变形机理.结果表明:藕状多孔铜沿垂直于气孔方向的压缩变形过程可分为弹性变形、气孔的塑性屈曲、气孔的密实化和密实化后的塑性变形4个阶段,其中塑性屈曲阶段的主要变形机理为多孔材料在垂直载荷的作用下先后形成若干个变形带,在变形带内圆形气孔先后以压扁和塌陷的方式进行塑性变形;采用回归分析方法建立藕状多孔金属沿垂直于气孔方向的压缩变形本构关系.  相似文献   

10.
In this work, we demonstrate a simple and inexpensive way to fabricate porous Ti2AlC, one of the best studied materials from the MAX phase family, with controlled porosity and pore size. This was achieved by using NaCl as the pore former, which was dissolved after cold pressing but before pressureless sintering at 1400 °C. Porous Ti2AlC with samples a volume fraction of porosity ranging from ~10 to ~71 vol.% and different pore size ranges, i.e. 42–83, 77–276 and 167–545 μm, were successfully fabricated. Fabricated samples were systematically characterized to determine their phase composition, morphology and porosity. Room temperature elastic moduli, compressive strength and thermal conductivity were determined as a function of porosity and/or pore size. For comparison, several samples pressureless-sintered without NaCl pore former, or fabricated by spark plasma sintering, were also characterized. The effects of porosity and/or pore size on the room temperature elastic moduli, compressive strength and thermal conductivity of porous Ti2AlC are reported and discussed in this work. It follows that porosity can be a useful microstructural parameter to tune mechanical and thermal properties of Ti2AlC.  相似文献   

11.
Porous copper with elongated cylindrical pores aligned either axially or radially was fabricated under a high pressure of mixture gas of hydrogen and argon. Structure characterization indicated that pore size increased, pore density decreased, pore size distribution became wider with an increase in porosity for the porous copper. The dependence of oil retaining capability and sliding friction coefficient on porosity and pore size of the porous copper were investigated. It was found that the oil content of the porous copper depended mainly on the porosity, and reached 27.6% on the specimen with a porosity of 47.1%. On the other hand, the oil efficiency was not satisfactory, and became worse when the porosity increased, which was attributed to the increase in pore size and the wider pore size distribution for the porous copper. It was proven that the impregnated oil in the pores played an important role in improving the sliding friction behaviour of the porous copper.  相似文献   

12.
固/气共晶定向凝固中的工艺判据   总被引:2,自引:0,他引:2  
张华伟  李言祥  刘源 《金属学报》2007,43(6):589-594
气体压力和熔体过热度决定熔体中气体溶解量从而直接影响多孔试样的气孔率.通过理论分析建立了固/气共晶定向凝固中气体逸出和藕状多孔结构形成所需的过热度和气体压力判据.以金属/氢共晶为例,计算结果表明,过热度和氩气分压均应有一适中的范围:给定氢气和氩气分压时,过热度应高于藕孔形成临界过热度而低于氢气逸出临界过热度;给定过热度和氢气分压时,氩气分压应高于氢气逸出临界氩气分压而低于藕孔形成临界氩气分压.该分析结果从藕状多孔Mg的实验结果得到了验证,可以作为高质量规则多孔材料实际制备过程的工艺参数指导原则.  相似文献   

13.
《Acta Materialia》2007,55(1):171-181
Porous piezoceramics have promising applications in underwater sonar detectors or medical ultrasonic imaging. We report the electrical and acoustic properties based on different pore microstructures of porous lead zirconate titanate (PZT) ceramics, fabricated using stearic acid (SA) and polymethylmethacrylate (PMMA) as pore-forming agents. The corresponding ferroelectric and piezoelectric properties decreased with increasing porosity due to the decrease in volume fraction of PZT phase, and were in good agreement with a modified cubes model in the case of isolated porosity. The corresponding acoustic impedance decreased from 16 to 8 MRayls (106 kg/m2 s), with increasing porosity from 3% to 43%, due to low acoustic impedance of pore phase. The electrical properties of porous PZT ceramics were closely associated with porosity and the interconnection of pores, but only slightly associated with the shape of pores. However, the acoustic impedance was only connected to porosity, not to either shape or interconnection of pores.  相似文献   

14.
A direct casting process was used to produce porous 3Y–ZrO2 ceramics using starch as a fugitive filler and binder. The compositions with low additions of starch had higher porosity than the volume fraction of starch initially in the green body (Xst), whereas, the compositions with high amounts of starch produced lower porosity than the predicted value. The well ordered structure consisted of spherical pores of 8–10 μm diameter, retained from the original starch particles, connected by channels. The interconnection between pores was dependent on the volume fraction of starch incorporated, as well as on the sintering temperature. Pore interconnection was observed for all the compositions sintered at 1000–1300 °C. Increasing the sintering temperature to 1400–1500 °C produced a marked dependence of the open to total porosity ratio on Xst. For a high porosity material, a bimodal channel size distribution was found at 1400 and 1500 °C. The primary pore channel diameter was 0.7 μm and the secondary one was close to 4 μm. As the sintering temperature increased, the volume of the connecting channels decreased; at 1500 °C only a minor volume of the larger channels was found.  相似文献   

15.
藕状规则多孔结构形成的压力条件和气孔尺寸的演变规律   总被引:2,自引:0,他引:2  
刘源  李言祥  张华伟  万疆 《金属学报》2005,41(8):886-890
金属-气体共晶定向凝固(Gasar)是一种制备规则多孔金属的新工艺,本工作通过分析气泡的生长条件,建立了藕状多孔结构形成的压力判据(H2气和Ar气分压比),并从实验上研究了凝固压力对气孔尺寸的影响规律,结果表明,随着凝固压力(气体总压)的增大,气孔平均直径不断降低。  相似文献   

16.
The structural and electrochemical properties of a selective laser sintered porous Ti–10Mo alloy were investigated. As the sintering temperature increases from 1100 to 1400 °C, the porosity and pore size decrease from 63% to 28% and from 178 to 56 μm, respectively. The alloy comprises major α and minor β phases at room temperature. With the decrease of porosity, the corrosion potential shifts towards positive direction and corrosion current density reduces, while the passive current density decreases and passivation range widens. The lower porosity, smaller pore size and slightly increased β phase fraction cause a superior corrosion resistance.  相似文献   

17.
Porous materials present serious technological constraints on all applications, such as battery electrodes, solid oxide fuel cells, synthetic bone grafts, filters, pharmaceutical powder compacts and feed pellets. Despite the significance of reliability in brittle materials, current literature is limited in pore–pore interaction effects on fracture statistics of brittle porous materials (BPMs). In this paper, a two-dimensional finite element (FE) simulation-based approach was developed to assess the pore–pore interactions and their impact on fracture statistics of isotropic microstructures. The classical fracture mechanics approach was combined with FE simulations that account for the interactions to predict the decrease in the fracture stress with increasing porosity. Rules were directly compared against experimental data for porous polycrystalline alumina, hydroxyapatite, and all the other data combined in Fig. 6. The maximum reliability of BPMs was shown to be limited by the underlying pore–pore interactions. Weibull modulus decreased more than threefold for a change in porosity from 1 to 2 vol.%. The Weibull moduli were between 7 and 18 in the range of 2–31 vol.% porosity. Even the microstructures with the same porosity level and size of pores showed substantial differences in fracture strength.  相似文献   

18.
《Acta Materialia》2007,55(1):285-293
The evolution of porosity during homogenization heat treatment of direct chill (DC) cast Al–Mg alloys was studied. Homogenization heat treatment was performed at 530 °C for various holding times (0, 1, 10 and 100 h). The evolution of porosity was quantified using two-dimensional metallography and three-dimensional X-ray microtomography (XMT) techniques. The metallographic data suggested that the mean pore size, maximum Feret length and percentage porosity all increased during homogenization, which might be explained by classical inter-pore Ostwald ripening. However, the pore number density also increased, which is not expected when inter-pore coarsening is the controlling mechanism. XMT was performed to elucidate this apparent contradiction. XMT data revealed that the tortuousity of the pore networks formed in DC casting was very complex and that there was no increase in maximum pore length during homogenization. Instead, intra-pore Ostwald ripening of the tortuous pore networks was the key mechanism driving the evolution of pore morphology, with coarsening of both the asperities and interconnects being driven by their high local curvatures. A one-dimensional simulation of vacancy diffusion was developed and corroborated this conclusion.  相似文献   

19.
A1050 porous aluminum is fabricated by the FSP route and the effect of the tool rotating rate on the porosity and morphology of the pores is investigated. To fabricate high-porosity porous aluminum with a uniform pore size distribution, a certain amount of stirring action is necessary; however, excessive stirring action is ineffective. A sufficiently uniform mixture is realized by traversing the FSP tool two times at a tool rotating rate exceeding 2200 rpm. The results indicate the minimum necessary amount of stirring action and will provide a guideline for improving productivity. Also, to improve the morphology of pores, optimizing the amount of Al2O3 is effective. Closed-cell porous aluminum with a porosity of about 80% was successfully fabricated by 2-pass FSP at 2200 rpm with the addition of 7 mass% Al2O3, a holding temperature of 998 K and a holding time of 10 min.  相似文献   

20.
金属-气体共晶定向凝固制备藕状多孔金属的研究   总被引:4,自引:0,他引:4  
金属-气体共晶定向凝固(Gasar)是一种制备规则多孔金属的新工艺.利用自行开发的Gasar装置,成功制备了具有规则气孔分布的藕状多孔金属Mg,并研究了铸型预热温度和气体压力等工艺参数对气孔率、气孔大小和分布的影响.结果表明:提高铸型预热温度可以完全消除无气孔金属壳;随着氢气压力的增大,铸锭的平均直径都在减小;在整个Gasar凝固中约有8%左右的氢气溢出.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号