首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Composites Science and Technology》2006,66(11-12):1724-1737
Highly oriented polypropylene (PP) tapes, with high tensile strength and stiffness achieved by molecular orientation during solid state drawing are consolidated to create high performance recyclable “all-polypropylene” (all-PP) composites. These composites possess a large temperature processing window (>30 °C) and a high volume fraction of highly oriented PP (>90%). This large processing window is achieved by using co-extruded, highly drawn PP tapes. This paper investigates the impact resistance of these all-PP composites, and the relationship between penetrative and non-penetrative impact behaviour, and composite consolidation conditions. The response of all-PP composites to falling weight impact is reported together with a comparison to conventional commercial glass reinforced polypropylene composites. A model for energy absorption is proposed by comparison with previous studies based on interfacial and tensile failure of tapes and composites.  相似文献   

2.
The creation of high-strength co-extruded polypropylene (PP) tapes allows the production of recyclable “all-polypropylene” (all-PP) composite products, with a large temperature processing window and a high fibre volume fraction. Available technologies for all-PP composites are mostly based on manufacturing processes such as thermoforming of pre-consolidated sheets. The objective of this research is to assess the potential of filament winding as a manufacturing process for all-PP composites made directly from co-extruded tapes or woven fabric. Filament wound pipes or rings were tested either by the split-disk method or a hydrostatic pressure test in order to determine the hoop properties, while an optical strain mapping system was used to measure the deformation of the pipe surfaces.  相似文献   

3.
All polypropylene (all-PP) composites were manufactured by exploiting the polymorphic forms of PP, in which alpha (α)-PP homopolymer tapes worked as reinforcement and β-nucleated random PP copolymer (β-rPP) as matrix. Both unidirectional (UD) and cross-ply (CP) laminates were prepared by tape winding technology combined with a film stacking method followed by hot pressing. To study the efficacy of using β-rPP as matrix, all-PP composites were also prepared with α-PP tape as reinforcement and alpha random PP copolymer (α-rPP) as matrix and their properties were compared. The mechanical performance of the composites was investigated by dynamic mechanical thermal analysis (DMTA), static flexure and dynamic impact tests. The volume fractions of the reinforcement and the void content were estimated by using optical microscope images. Both the DMTA and the static flexural bending tests revealed that the α-PP tape acted as a more effective reinforcement for the β-rPP matrix than for the α-rPP, especially for all-PP composites of UD lay-up. The perforation impact properties were determined from instrumented falling weight impact (IFWI) tests, performed at room temperature. It was found that transcrystalline layer is responsible for the stress transfer from the β-rPP matrix to the α-PP reinforcement.  相似文献   

4.
The use of natural fibres instead of man made fibres, as reinforcements in thermoplastics, gives interesting alternatives for production of low cost and ecologically friendly composites. In this work different commercially available semi-finished natural fibre mat reinforced thermoplastics (NMT) composites have been studied. Mechanical properties and microstructure of different NMT composites were investigated and compared to conventional GMT (glass fibre mat reinforced thermoplastic) composites and pure polypropylene (PP). The study included also NMT composites manufacturing processing parameters as processing temperatures and pressure during compression moulding. The results showed that NMT composites have a high stiffness compared to pure polymer and the NMT with a high fibre content (50% by weight) showed even better stiffness than the GMT. The GMT composites had superior strength and impact properties compared to the NMT which might be due to the relatively low strength of the natural fibres but also to poor adhesion to the PP matrix. The NMT materials showed a large dependence on direction and are therefore believed to have more fibres oriented in one direction. The stronger direction (0°) of the NMT was in some cases as much as 45% better than the 90° direction.  相似文献   

5.
Many technologies presented in literature for the forming of self-reinforced or all-polymer composites are based on manufacturing processes involving thermoforming of pre-consolidated sheets. This paper describes novel direct forming routes to manufacture simple geometries of self-reinforced, all-polypropylene (all-PP) composites, by moulding fabrics of woven co-extruded polypropylene tapes directly into composite products, without the need for pre-consolidated sheet. High strength co-extruded PP tapes have potential processing advantages over mono-extruded fibres or tapes as they allow for a larger temperature processing window for consolidation. This enlarged temperature processing window makes direct forming routes feasible, without the need for an intermediate pre-consolidated sheet product. Thermoforming studies show that direct forming is an interesting alternative to stamping of pre-consolidated sheets, as it eliminates an expensive belt-pressing step which is normally needed for the manufacturing of semi-finished sheets products. Moreover, results from forming studies shows that only half the energy was required to directly form a simple dome geometry from a stack of fabrics compared to stamping the same shape from a pre-consolidated sheet.  相似文献   

6.
《Composites Part A》2001,32(5):619-629
The structure–property relationship of wood flake–high-density polyethylene (HDPE) composites was studied in relation to the matrix agent melt flow behaviour and processing technique. The flake distribution and flake wetting were optimised to obtain acceptable mechanical properties in these composites using two processing techniques, namely twin-screw compounding and mechanical blending. The microstructure of the composites revealed that the twin-screw compounded composites based on medium melt flow index (MMFI) HDPE always achieved better flake wetting and distribution, and therefore had higher mechanical properties, than those mechanically blended composites or twin-screw compounded composites with low MFI (LMFI) HDPE. For 50:50 wt% composites the overall flake wetting, depending on processing technique and matrix flow behaviour, is ranked as compounded MMFI>compounded LMFI>blended MMFI>blended LMFI. However, the uniformity of flake distribution of the composites follows a somewhat different pattern, i.e. compounded MMFI>blended MMFI>compounded LMFI>blended LMFI. Evidence shows that the medium MFI HDPE penetrates into lumens of wood fibres in wood flakes. This phenomenon combined with flake wetting and flake distribution had a profound effect on the mechanical properties, in particular the impact strength.  相似文献   

7.
Highly oriented, free-standing films of a thermotropic liquid-crystalline polymer (LCP) were prepared using a new processing technique, referred to as “foil-spintrusion”. These films underwent solid-state fusion at elevated temperatures to yield homogeneous, self-reinforced monolithic “composites” without the use of additional adhesives. In this study, unidirectional LCP monoliths were evaluated for their mechanical performance. The monoliths exhibited highly anisotropic behavior, with stiffness and tensile strength along the direction of orientation of around 65 GPa and 1.7 GPa, respectively, combined with excellent damping properties in the viscoelastic regime. In addition, experiments showed that the material has a high tensile strength (>2.2 GPa) at high strain rates, indicating promising behavior under high impact conditions. As expected for such highly oriented polymer systems, the monoliths were found to exhibit poor compressive and shear strengths due to low internal coherence of the material itself. However, it was shown that the LCP monoliths could be useful for applications requiring high specific stiffness, for example as facings for composite sandwich panels.  相似文献   

8.
J.M. Zhang  C.T. Reynolds  T. Peijs   《Composites Part A》2009,40(11):1747-1755
Self-reinforced polymer or all-polymer composites have been developed to replace traditional fibre reinforced plastic (FRP) with good interfacial adhesion and enhanced recyclability. Poly(ethylene terephthalate) (PET) is one of the most attractive polymers to be used in these fully recyclable all-polymer composites, in terms of cost and properties. In this work, all-PET composites were prepared by film stacking of oriented PET tapes. A processing temperature window was determined by a series of tests on PET tapes and co-PET films, including DSC and T-peel tests. Tensile properties of PET tape, co-PET film and all-PET composites are reported and compared with a commercial co-extruded PURE® polypropylene tape. The effect of compaction temperatures and pressures on tensile properties of all-PET composites was investigated to explore the optimum processing parameters for balancing good interfacial adhesion between tapes and residual tensile properties of PET tapes.  相似文献   

9.
In the present work self-reinforced polypropylene composites (SRPPC) were developed and investigated. As reinforcement a fabric, woven from highly stretched split PP yarns, whereas as matrix materials α and β crystal forms of isotactic PP homopolymer and random copolymer (with ethylene) were selected and used. The composite sheets were produced by film-stacking method and compression moulded at different processing temperatures keeping the holding time and pressure constant. The quality of the composite sheets was assessed by optical microscopy, density and peel-strength measurements. The SRPPC specimens were subjected to static tensile and flexural, and dynamic falling weight impact tests and the related results were analyzed as a function of processing temperature and polymorphic composition. Based on the results the optimum processing temperature was determined and found by 20–25 °C above the related matrix melting temperature. It was established that the β-modified PP homopolymer based one-component SRPPCs possessed similar attractive mechanical properties as the intensively studied α-random PP copolymer based two-component ones.  相似文献   

10.
This study focuses on a novel technique to produce thermoplastic composites directly from bicomponent nonwovens without using any resins or binders. Conceptually, the structure of the bicomponent fibers making up these nonwovens already mimics the fiber–matrix structure of fiber reinforced composites. Using this approach, we successfully produced isotropic thermoplastic composites with polymer combinations of polyethylene terephthalate/polyethylene (PET/PE), polyamide-6/polyethylene (PA6/PE), polyamide-6/polypropylene (PA6/PP), and PP/PE. The effects of processing temperature, fiber volume fraction, and thickness of the preform on the formation and structure of the nonwoven composites were discussed. Processing temperatures of 130 and 165 °C for PE and PP matrices, respectively, resulted in intact composite structures with fewer defects, for fiber volume fraction values of up to 51%. Moreover, an insight into the changes on the fine structure of the bicomponent fibers after processing was provided to better explain the mechanics behind the process. It is hypothesized that the composite fabrication process can result in annealing and increases the degree of crystallinity and melting temperature of polymers by thickening lamellae and/or removing imperfections. One of the other outcomes of this study is to establish what combination of mechanical properties (tensile and impact) nonwoven composites can offer. Our results showed that compared to glass mat reinforced thermoplastic composites, these novel isotropic nonwoven composites offer high specific strength (97 MPa/g cm−3 for PA6/PE), very high strain to failure (152% for PP/PE), and superior impact strength (147 kJ/m2 for PA6/PP) which can be desirable in many critical applications.  相似文献   

11.
All polypropylene (all-PP) composites were manufactured by exploiting the polymorphic forms of PP, in which alpha (α)-PP tapes worked as reinforcement and beta (β)-PP served as matrix. The mechanical performance of the composite was investigated in a range of frequencies and temperatures using dynamic mechanical thermal analysis (DMTA). The volume fractions of matrix and reinforcement were estimated using optical microscope images. Both the DMTA and the static flexural bending tests revealed that the α-PP tapes act as an effective reinforcement for the β-PP matrix. Time–temperature superposition (TTS) was applied to estimate the stiffness of the composites as a function of frequency (f = 10−9...1023) in the form of a master curve. The Williams–Landel–Ferry (WLF) model described properly change in the experimental shift factors used to create the storage modulus versus frequency master curve. The activation energies for the α and β relaxations were also calculated by using the Arrhenius equation.  相似文献   

12.
In this study a designed rolling setup was used to fabricate new structure polypropylene/hydroxyapatite-polypropylene (PP/HA-PP) sandwich nano-composites. To check the effect of rolling process and PP layers content on the structure and mechanical properties of these sandwich composites, different mechanical tests and analysis were performed on these composites. Results of tensile, bending and buckling tests show the rolling process improves the strength, modulus and flexural rigidity of composites significantly while with increasing the PP layers content from 10 vol.% to 20 vol.% decreases the stiffness, flexural rigidity and modulus of composites slightly. Results of impact test demonstrate the rolling process and increasing the volume percentage of the PP layers in sandwich composites cause a dramatic improve in impact absorbed energy of the PP/HA-PP sandwich composites. The results of Differential Scanning Calorimetry (DSC) analysis confirm the rolling process increases the crystallinity and molecular alignment of polypropylene in composites. The results of mechanical tests and DSC analysis show the increasing of polypropylene molecular alignment by rolling process is the most dominant reason of improvement the mechanical properties of sandwich composites.  相似文献   

13.
N.O. Cabrera  B. Alcock  T. Peijs   《Composites Part B》2008,39(7-8):1183-1195
This paper describes the creation of polypropylene sandwich panels, based on all-polypropylene (all-PP) composite laminates combined with a polypropylene based honeycomb or foam core. These all-PP composite laminates are based on high modulus polypropylene tape reinforcing a polypropylene matrix. Sandwich panels containing these all-PP composite laminate faces are compared with sandwich panels containing conventional glass fibre reinforced polypropylene laminate faces, and the mechanical properties, failure modes, and design requirements of these different materials are discussed.  相似文献   

14.
Natural fibres have significant advantages over glass, as an alternative fibre reinforcement material. Natural fibres are more environmentally friendly, healthier and safer, and cause less abrasive wear of processing equipment. On the other hand, their mechanical properties show a large scatter, and are at best equivalent to glass (natural fibres, however, have a lower density). Further disadvantages of the current natural fibre reinforced materials are their moisture sensitivity – which makes them prone to swelling and rotting – their smell and their current cost level.Experiments with the application of Natural Fibre Mat Thermoplastics (NMT) on current automotive products proved the disadvantages. On the other hand it yielded several new research themes concerning property limits and gave insight in the area's where to optimize in order to get a broad application of natural fibre reinforced plastic products.Looking towards the long term, other alternatives, like bio-composites or all-PP composites should be further explored.  相似文献   

15.
Both isotropic and oriented wood polymer composites (WPC) based on 40% w/w of a softwood powder/hardwood powder and polypropylene (PP), together with solid pieces of wood, were subjected to water immersion and thermal expansion tests. Although generally die drawing increased the amount of water absorbed by the WPC by about 2-fold when compare to isotropic WPC, the oriented WPC exhibited extremely high hydro-dimensional stability. The values of the longitudinal and transverse swelling/shrinkage of the WPC oscillated only between 0 and −2.3% compared to values of between 4 and 14% for the solid woods. Incorporation of soft/hard wood powders into PP also substantially decreased its thermal expansion coefficient α in both the isotropic and the oriented states. This extremely positive effect was enhanced by increasing the draw ratio. In the longitudinal direction, α decreased from about 80 × 10−6 °C−1 (for the isotropic PP) to 5 × 10−6 °C−1 for the highly drawn PP filled with softwood.  相似文献   

16.
In this study, the effects of screw configuration, screw speed and silica content on the physico-mechanical and foaming properties of PP/wood-fiber (WF) composites were investigated. PP/WF composites were produced by the intermeshing co-rotating twin screw extruder. Microcellular closed cell PP/WF composite foams were prepared using pressure-quench batch process method. Firstly, an attempt has been made to determine the optimum conditions of extrusion that involve screw configurations and screw speed. The mechanical properties and morphology results showed that PP/WF composite prepared under the configuration C at screw speed of 150 rpm have higher mechanical properties, and narrower cell size distribution caused by uniform dispersion of wood fiber. And then, under the optimal processing conditions, the effect of silica content on the physico-mechanical properties of PP/WF composite, the final cell morphology as well as the relative density of the foamed PP/WF/Silica composites is studied.  相似文献   

17.
Conducting carbon black (CB), one of the intrinsic semi-conductors, was added into matrix polypropylene (PP) to prepare conducting composites by means of the melt processing method. Another component EVA was mixed into the composites in order to lower the percolation threshold. The percolation threshold of the ternary CB/PP/EVA composites was merely 3.8 vol%, while it was up to 7.8 vol% for the binary CB/PP composites without EVA. The conductivity of the ternary CB/PP/EVA composites was up to 10–2 S/cm when the CB percentage was 5 vol%, while that of the binary CB/PP was lower than 10–2 S/cm when the CB percentage was up to 10 vol%. DSC thermograms of the CB/PP/EVA composites showed that the melting peak shifted to low temperature with increasing CB content. The addition of CB and EVA resulted in the decrease of the crystallinity of PP in the ternary composites. The mechanical properties are also discussed. SEM and TEM were employed to study the morphology of the blend system. The results indicated that CB existed in the form of aggregations in the blend system. The smallest unit that formed a percolation network was grape-like aggregates with some small branches, which consisted of some CB particles, rather than the individual particles. This distribution was very valuable for forming conducting paths and for lowering the percolation value.  相似文献   

18.
This work reports on the study of the microstructure and electrical properties (conduction and superconduction) of YBa2Cu3O7–x (Y) and polypropylene (PP) composites. For the purpose of enhancing and improving their conductive properties, different amounts of carbon black (N) and copper (Cu) were incorporated into these composites, and the effects of N, Cu and Y were determined, both on the microstructure of PP and on the electrical properties of the resulting composites. The complex systems on the basis of PP/Cu/Y and PP/N/Y were sintered in order to study their mechanical characteristics, their morphology and the superconductor properties of the end products.  相似文献   

19.
Simultaneous influence of polypropylene-graft-maleic anhydride (MAPP) and silane-treated hemp fibers (HF) on morphology, thermal and mechanical properties of high-flow polypropylene (PP) modified with poly[styrene-b-(ethylene-co-butylene)-b-styrene] (SEBS) was studied in this paper. The addition of SEBS reduced the efficiency of MAPP in PP composites with HF, thus silane-treated fibers (HFs) were used to improve polymer–fiber interface. Thermal stability of HF was improved after silane treatment and less than 2% weight loss was observed at 240 °C in composites with 30 wt% HF. Better dispersion of fibers and better efficiency in enhancing static and dynamic mechanical properties of PP, doubling its strength and stiffness were observed in composites with treated fibers compared to untreated ones. High ability to absorb and dissipate energy and well-balanced strength and stiffness were showed by PP modified with SEBS and MAPP containing 30 wt% HFs. These composites were studied as an alternative to conventional PP/glass fibers composites for injection molding of small to medium auto parts.  相似文献   

20.
《Composites Part A》2004,35(1):23-32
The effect of interfacial interactions on the mechanical properties of polypropylene (PP)/natural zeolite composites was investigated under dry and wet conditions. Interfacial interactions were modified to improve filler compatibility and mechanical properties of the composites by surface treatment of natural zeolite with a non-ionic surface modifier; 3 wt% polyethylene glycol (PEG) and three different types of silane coupling agents; 3-aminopropyltriethoxysilane (AMPTES), methyltriethoxysilane (MTES) and 3-mercaptopropyltrimethoxysilane (MPTMS), at four different concentrations (0.5–2 wt%). PP composites containing (2–6 wt%) zeolite were prepared by an extrusion technique. The tensile properties of the composites determined as a function of the filler loading and the concentration of the coupling agents were found to vary with surface treatment of zeolite. Silane treatment indicated significant improvements in the mechanical properties of the composites. According to the dry and wet tensile test results, the maximum improvement in the mechanical properties was obtained for the PP composites containing 1 wt% AMPTES treated zeolite. The improvement in the interfacial interaction was confirmed using a semi-empirical equation developed by Pukanszky. Good agreement was obtained between experimental data and the Pukanszky model prediction. Scanning electron microscopy studies also revealed better dispersion of silane treated filler particles in the PP matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号