首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
Atmospheric pressure filamentary dielectric barrier discharge (APDBP) treatment was adopted to modify the surface of the multi-walled carbon nanotubes (MWCNTs), altering the miscibility of MWCNTs with bismaleimide (BMI) matrix and the effects of this treatment on friction and wear properties of MWCNTs/BMI composites were investigated. Dynamic mechanical analysis (DMA), scanning electron microscope (SEM) images of the fractured surface and the worn surface were adopted to figure out the possible friction and wear mechanism of the composite. It is found that BMI composite with APDBD treated MWCNTs exhibits a lower friction coefficient value and a lower wear loss rate value than the composite with original MWCNTs, which can be related to the higher degree of crosslink of the resin and also better interfacial adhesion between MWCNTs and the BMI matrix.  相似文献   

2.
Bismaleimide containing cyanate resin(BMI/CE) pre-ploymer was used as resin matrix. Fluorinated multiwalled carbon nanotubes(F-MWCNTs) were used as fillers to prepare F-MWCNT/BMI/CE nanocomposites via a solution intercalation method. The influence of F-MWCNT content on the mechanical, tribological and heat resistant properties of the nanocomposites was investigated. The morphology of the fracture surface and the wear surface of nanocomposites were characterized by scanning electron microscopy.Results show that the addition of F-MWCNTs is beneficial to improving the mechanical and tribological properties of the nanocomposites. It's worth noting that when the content of F-MWNTs was 0.6 wt%, the performances of nanocomposite are optimized(i.e., highest impact strength, lowest frictional coefficient and wear rate). In addition, the nanocomposites exhibit good thermal stability in comparison with BMI/CE.  相似文献   

3.
This work focused on the fracture mechanisms and reinforcing effects of ozone-treated multi-walled carbon nanotubes (MWCNTs) in epoxy matrix. Ozone functionalization of MWCNTs was found to be of help for a better dispersion and stronger interfacial bonding with epoxy matrix, which in turn improve the strength and fracture toughness of the resin. The MWCNT/epoxy composites showed complicated failure modes than the conventional fibrous composites, which have been quantitatively investigated and correlated with the fracture toughness of the nanocomposites studied.  相似文献   

4.
采用酸化处理的多壁碳纳米管(MWCNTs)增强双酚A型氰酸酯-酚醛型氰酸酯(BCE-NCE)树脂。通过SEM、TEM对MWCNTs/BCE-NCE树脂复合材料微观结构进行表征,利用DSC、DMA和TG/DTA对MWCNTs/BCE-NCE树脂复合材料热性能进行研究,采用电子拉力机对MWCNTs/BCE-NCE树脂复合材料力学性能进行测试,采用谐振腔法对MWCNTs/BCE-NCE树脂复合材料介电性能进行测试。结果表明,混酸处理过的MWCNTs在BCE-NCE树脂基体中的分散效果较好。MWCNTs对BCE-NCE树脂热力学性能影响不大,当MWCNTs添加量为0.8wt%时,BCE-NCE树脂玻璃化转变温度(Tg)从298℃下降到285℃,但仍维持较高水平。当MWCNTs添加量为0.6wt%时,MWCNTs/BCE-NCE树脂复合材料冲击强度为11.40 kJ/m2,提高了40.7%。MWCNTs的加入增加了BCE-NCE树脂介电常数和介电损耗,当MWCNTs添加量为0.8wt%、频率为1 GHz时,MWCNTs/BCE-NCE树脂复合材料介电常数为5.1,介电损耗为0.032。因此,MWCNTs/BCE-NCE树脂复合材料未来可在耐高温复合材料和电子等行业应用。  相似文献   

5.
采用交流(AC)电场诱导法制备了多壁碳纳米管(MWCNTs)均匀分散且定向有序排列的MWCNTs/环氧树脂复合材料。采用SEM、偏振拉曼光谱等研究了电场强度、MWCNTs含量、加电时间及温度(黏度)等因素对MWCNTs定向排列的影响,讨论了MWCNTs有序排列对MWCNTs/环氧树脂复合材料电学和力学性能的影响。结果表明:MWCNTs沿电场方向有序排列;MWCNTs/环氧树脂复合材料施加AC电场后的拉曼强度明显高于未施加电场的情况;当MWCNTs含量从0wt%增加到0.025wt%时,MWCNTs/环氧树脂复合材料导电率从2.3×10-12 S/cm增加到1.3×10-8 S/cm,增加了约4个数量级;MWCNTs含量为2.5wt%时,MWCNTs/环氧树脂复合材料拉伸强度提高了26.3%。  相似文献   

6.
A novel kind of multi-walled carbon nanotubes (MWCNTs)/cyanate ester (CE) composites with low percolation threshold, high dielectric constant and excellent thermal property was developed. In order to investigate the effect of the surface nature of MWCNTs on the morphology and properties of the composites, MWCNTs and surface treated carbon nanotubes (MWCNTs–OH) were used to prepare two sorts of composites, coded as M/CE and M–OH/CE, respectively. Results show that increasing the content of MWCNTs or MWCNTs–OH, the dielectric constant of both kinds of composites initially increases until reaches the maximum value, and then decreases. In addition, when the percolation occurs, dielectric constant and loss of both kinds of composites decrease quickly with the increase of the tested frequency. The addition of MWCNTs into CE decreases the glass transition temperature and thermal stability, while the incorporation of MWCNTs–OH significantly improves the thermal stability of CE resin.  相似文献   

7.
Multiwalled carbon nanotubes (MWCNTs)/epoxy nanocomposites were fabricated by using ultrasonication and the cast molding method. In this process, MWCNTs modified by mixed acids were well dispersed and highly loaded in an epoxy matrix. The effects of MWCNTs addition and surface modification on the mechanical performances and fracture morphologies of composites were investigated. It was found that the tensile strength improved with the increase of MWCNTs addition, and when the content of MWCNTs loading reached 8 wt.%, the tensile strength reached the highest value of 69.7 MPa. In addition, the fracture strain also enhanced distinctly, implying that MWCNTs loading not only elevated the tensile strength of the epoxy matrix, but also increased the fracture toughness. Nevertheless, the elastic modulus reduced with the increase of MWCNTs loading. The reasons for the mechanical property changes are discussed.  相似文献   

8.
碳纳米管(Carbon nanotube, CNT)/环氧树脂(Epoxy resin, EP)纳米复合材料中树脂含量、分布、CNT取向及其与树脂间界面结合是制备高性能纳米复合材料的关键因素。为了探究树脂分布和CNT/EP复合材料性能之间的关系,采用浮动催化化学气相沉积法制备的CNT薄膜和EP为原料,通过浸渍、牵伸、清洗和热压固化工艺制备CNT/EP复合薄膜。利用聚焦离子束结合扫描电子显微镜定性表征树脂在复合膜中的分布状态。结果表明,随着树脂含量增加,树脂在复合薄膜表面富集程度增加。在最优工艺条件下制备的纳米复合材料中CNT含量为66.14wt%, 拉伸强度和拉伸模量达到1405 MPa和46.7 GPa。   相似文献   

9.
In this work, we studied the influence of surface functionality of multi-walled carbon nanotubes (MWCNTs) on the mechanical properties of basalt fiber-reinforced composites. Acid and base values of the MWCNTs were determined by Boehm's titration technique. The surface properties of the MWCNTs were determined FT-IR, and XPS. The mechanical properties of the composites were assessed by measuring the interlaminar shear stress, fracture toughness, fracture energy, and impact strength. The chemical treatments led to a change of the surface characteristics of the MWCNTs and of the mechanical interfacial properties of MWCNTs/basalt fibers/epoxy composites. Especially the acid-treated MWCNTs/basalt fibers/epoxy composites had improved mechanical properties compared to the base-treated and non-treated MWCNTs/basalt fibers/epoxy composites. These results can probably be attributed to the improved interfacial bonding strength resulting from the improved dispersion and interfacial adhesion between the epoxy resin and the MWCNTs.  相似文献   

10.
A novel class of epoxy matrix hybrid nanocomposites has been developed containing multiwalled carbon nanotubes (MWCNTs) and nanodiamonds (NDs) to explore the combined effect of nanoreinforcements on the mechanical performance of nanocomposites. Both the nanofillers were functionalized before incorporating into epoxy matrix to promote interfacial interactions. The concentrations of both MWCNTs and NDs in the nanocomposites were increased systematically, i.e. 0.05 wt.%, 0.1 wt.% and 0.2 wt.% while composites containing individual nanoreinforcements were also manufactured for comparison. The developed nanocomposites were characterized microstructurally by scanning electron microscopy (SEM) and mechanically by tensile, flexural, impact and hardness tests. Homogeneous dispersion of MWCNTs and NDs was observed under SEM, which resulted in the enhancement of mechanical properties of nanocomposites. The composites containing 0.2 wt.% MWCNTs and 0.2 wt.% NDs showed 50% increase in hardness while tensile strength and modulus enhanced to 70% and 84%, respectively. Flexural strength and modulus also showed a rise of 104% and 56%, respectively. Interestingly, fracture strain also increased in both the tensile and flexural testing. The impact resistance increased to 161% showing a significant improvement in the toughness of hybrid nanocomposites.  相似文献   

11.
Aluminum matrix composites reinforced by different contents of multi-walled carbon nanotubes (MWCNTs) were fabricated by friction stir processing (FSP). The microstructure of nano-composites and the interface between aluminum matrix and MWCNTs were examined using optical microscopy (OM) and transmission electron microscopy (TEM). It was indicated that MWCNTs were well dispersed in the aluminum matrix throughout the FSP. Tensile tests and microhardness measurement showed that, with the increase of MWCNT content, the tensile strength and microhardness of MWCNTs/Al composites gradually increased, but on the contrary, the elongation decreased. The maximum ultimate tensile strength reached up to 190.2 MPa when 6 vol.% MWCNTs were added, and this value was two times more of that of aluminum matrix. Appearances and fracture surface micrographs of failed composite samples indicated that the composites become more and more brittle with the increase of the MWCNT content.  相似文献   

12.
While carbon nanotubes have been used for a variety of purposes, it was not known whether they can improve tribological properties of polymers. Polyamide 6 (PA6) has been reinforced with 0.2, 0.5 and 1.0 wt% of multiwall carbon nanotubes (MWCNTs) by melt mixing process and characterized by scanning electron microscopy (SEM), transmission electron microscopy, thermogravimetric analysis (TGA), scratching, sliding wear and tensile testing. TGA results for the air atmosphere show that MWCNTs shift the onset of thermal degradation to higher temperatures. Sliding wear tests show that the penetration depth decreases as the concentration of carbon nanotubes increases. However, the viscoelastic healing is hampered by the MWCNTs presence and the residual depths increase at the same time. Narrower scratch groove widths are seen in SEM for composites with MWCNTs, and scratch hardness increases. Tensile tests show an increase of 27% in the Young modulus value upon addition of 1.0% of MWCNTs. The stress at yield is also higher for the nanocomposites.  相似文献   

13.
基于炭布优异的摩擦磨损性能、 自润滑性能以及低密度等特点, 将其应用于湿式摩擦材料中, 以适应高转速、 大压力或润滑不充分等极端工况。分别以1 K、 3 K和6 K碳布为增强体, 制备出三种炭布/树脂复合摩擦材料, 研究了其湿式摩擦学性能。结果表明: 随着纤维束内单丝数量的增加, 摩擦材料的瞬时制动稳定性降低, 动摩擦系数减小, 但是耐磨性能提高。所有摩擦材料的磨损率小于1.10×10-5 mm3/J, 表现出较好的耐磨性能, 并且对偶材料的磨损率很小, 仅为0.40×10-5 mm3/J。磨损主要表现为纤维断裂、 拔出及树脂脱粘等形式, 但是在磨损表面没有形成大尺寸磨屑和明显的"第三体"磨粒, 导致摩擦材料和对偶材料的磨损率较小。  相似文献   

14.
Cement matrix composites have been prepared by adding 0.5% in weight of multi wall carbon nanotubes (MWCNTs) to plain cement paste. In order to study how the chemical–physical properties of the nanotubes can affect the mechanical behavior of the composite, we compared the specimen obtained by mixing the same cement paste with three different kinds of MWCNTs. In particular, as-grown, annealed and carboxyl functionalized MWCNTs have been used. In fact, while high temperature annealing treatments remove lattice defects from the walls of CNTs, hence improving their mechanical strength, acid oxidative treatments increase chemical reactivity of pristine material, consequently chemical bonds between the reinforcement and the cement matrix are supposed to enhance the mechanical strength.Flexural and compressive tests showed a worsening in mechanical properties with functionalized MWCNTs, while a significant improvement is obtained with both as-grown and annealed MWCNTs.The phase composition of the composites was characterized by means of thermo gravimetric analysis coupled with mass spectroscopy, while the mineralogy and microstructure were analyzed by means of an X-ray diffractometer and scanning electron microscope. The results are interpreted and discussed taking into account the chemical and physical properties of the MWCNTs by means of EDX, TGA, SEM and Raman analysis.  相似文献   

15.
采用搅拌摩擦加工技术制备不同含量多壁碳纳米管增强铝基复合材料,并对复合材料高温力学性能进行研究。结果表明:多壁碳纳米管的添加使得铝基体材料微观组织更加细小,并形成了少量纳米晶;铝基体中有较高密度位错,并在局部呈位错缠结状分布。与未添加多壁碳纳米管的铝基体相比,复合材料的高温拉伸强度明显增强,且随着碳纳米管含量的增加,复合材料强度逐渐提高,而高温塑性不断降低,350℃时,6.6%(体积分数)MWCNTs/Al复合材料的抗拉强度达到78MPa,为未添加多壁碳纳米管铝基材强度的3.9倍;断口分析表明,随着测试温度的提高,韧窝逐渐变小,呈脆性断裂特征。  相似文献   

16.
In this study, the effects of a MWCNT treatment on the dispersion of MWCNTs in aqueous solution and the tensile properties of MWCNT/epoxy nanocomposites were investigated. MWCNTs were treated using acid and gum arabic, and MWCNT/epoxy nanocomposites were fabricated with 0.3 wt.% unmodified, oxidized and gum-treated MWCNTs. The dispersion states of the unmodified, oxidized, and Gum-treated MWCNTs were characterized in distilled water. The tensile strengths and elastic modulus of the three nanocomposites were determined and compared. The results indicated that the gum treatment produced better dispersion of the MWCNTs in distilled water and that gum-treated MWCNT/epoxy nanocomposites had a better tensile strength and elastic modulus than did the unmodified and acid-treated MWCNT/epoxy nanocomposites. Scanning electron microscope examination of the fracture surface showed that the improved tensile properties of the gum-treated MWCNT/epoxy nanocomposites were attributed to the improved dispersion of MWCNTs in the epoxy and to interfacial bonding between nanotubes and the epoxy matrix.  相似文献   

17.
采用抽滤法制备了多壁碳纳米管(MWCNTs)纸(又称巴基纸), 研究了巴基纸增强不同环氧基体复合材料(巴基纸复合材料)的拉伸性能及其断口形貌, 分析了MWCNT含量、 树脂基体拉伸性能以及巴基纸与树脂的界面黏附作用对复合材料拉伸性能的影响。结果表明: 在MWCNT质量分数小于39.1%范围内, 增加碳纳米管含量, 可显著提高巴基纸/环氧复合材料的拉伸性能; 巴基纸/环氧复合材料的拉伸强度和模量与树脂基体的性能密切相关, 其拉伸破坏形式受基体的脆韧性影响显著; 相比较而言, 巴基纸与树脂间的黏附功对巴基纸/环氧复合材料拉伸性能的影响不明显。  相似文献   

18.
为制备具有高介电常数的复合材料,采用注射成型法制备了原始多壁碳纳米管(P-MWCNTs)/聚偏氟乙烯(PVDF)复合材料和石墨化多壁碳纳米管(G-MWCNTs)/PVDF复合材料。然后,对P-MWCNTs和G-MWCNTs进行了Raman光谱表征,对MWCNTs/PVDF复合材料进行了断面形貌、力学性能和电学性能测试。结果表明:G-MWCNTs比P-MWCNTs具有更高的纯度和结晶度,两种不同的MWCNTs都能均匀分散在PVDF基体中,添加MWCNTs会显著影响PVDF的力学行为。MWCNTs/PVDF复合材料的介电性能随MWCNTs含量的增加而提高,与P-MWCNTs相比,G-MWCNTs有效降低了复合材料的渗流阈值。当频率为100 Hz时,纯PVDF的介电常数为7.0;当P-MWCNTs的含量为5wt%时,复合材料的介电常数为23.8;当G-MWCNTs的含量为5wt%时,复合材料的介电常数高达105.0。注射成型法制备的MWCNTs/PVDF复合材料仍保持相对较低的电导率,进而导致复合材料的能量损耗较低,对电荷存储应用具有重要意义。  相似文献   

19.
The objective of this paper is to investigate the effect of Multi-Walled Carbon Nanotubes (MWCNTs) content on microstructure and dry sliding wear behavior of hypo-eutectic A356Al–Si alloy Metal Matrix Nano-Composites (MMNCs). Composites containing 0.5, 1.5, and 2.5 wt.% MWCNTs were prepared by rheocasting technique followed by squeeze casting. Characterization of nanocomposites was done by scanning electron microscopy (SEM) equipped with energy dispersive X-ray analysis (EDX), dry sliding wear tests were performed in a pin-on-disk wear tester against a steel disk at various speeds and normal loads. Results revealed that a decrease in both wear rate and friction coefficient of the nanocomposites considerably with the increase of MWCNT's content. The formation of the hard compact transfer layer on the pin surface nanocomposites assisted in increasing the wear resistance of these materials. It is that the transfer layer which was formed under an applied load of 20 N can act as a protective layer and help in reducing the wear rate. The results indicate the nano composites could be used in light-weight applications where moderate strength and wear properties are needed.  相似文献   

20.
《Composites Part B》2007,38(1):79-85
Extrusion compression and dry sliding were carried out on the various nanoparticle filled composites by using cylindrical specimens. To study the effect of exfoliated nanoparticles on the epoxy matrix to friction and wear, Na-montmorillonite and titanium dioxide nanoparticles were prepared with the filler content varied from 0 to 10 vol.%. Compression tests were conducted by using cylindrical blocks to obtain the mechanical properties of the nanocomposites. To determine the tribological property, the sliding wear tests with high pressure were performed at room temperatures by using a block-on-disc apparatus. The morphologies of the wear trace and the interlayer mechanism of the as-spun material were obtained by using X-ray diffractometer (XRD) and scanning electron microscopy (SEM). Experimental results showed that the compression strength, fracture strength and Young’s modulus for both reinforced nanocomposites are much higher than that of pure epoxy matrix. The friction coefficient and wear coefficient of Cloisite® 30B nanocomposites were effectively reduced with rising filler content which should be attributed to the improved dispersion of the nanoparticles. Finally, the SEM observation on the wear tracks surface for the pure epoxy matrix and its composites filled with various kinds of nanoparticle will be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号