首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
纤维增强聚合物复合材料(FRP)约束损伤混凝土抗压强度模型对于混凝土柱类构件的修复和加固具有重要指导意义.现有FRP修复混凝土的强度模型适用条件有限,同一模型不能同时应用于不同强弱约束、不同强度混凝土、不同倒角混凝土的强度预测.本文根据广义回归神经网络(GRNN)的特点,基于46个FRP强约束损伤混凝土方柱、210个F...  相似文献   

2.
This paper presents a study on interfacial stresses of a concrete column confined by fiber-reinforced plastic (FRP) plate, which has been widely applied in the civil engineering for rehabilitation and retrofitting of conventional structures. It is assumed that both the FRP plate and concrete structures are elastic and the interface between them is perfectly bonded. An analytical model for analysis of the interfacial stresses is developed and the finite element modeling is carried out for an axisymmetric FRP–concrete hybrid column. Components of the FRP plate with different geometric and material properties are considered to study their effects on the interfacial stresses. The study shows that the interfacial stresses are influenced by several factors, such as modulus ratio of FRP and concrete and thickness of FRP. This work provides a comprehensive investigation on the mechanical behavior of the interface in hybrid structures.  相似文献   

3.
The investigation focuses on the effectiveness of fiber-reinforced polymer (FRP) confinement in upgrading ductility and strength of reinforced concrete members under axial monotonic compression. An experimental program is presented that extends available database to address the behavior of old type members with square section, having extremely low concrete strength and potential longitudinal bars’ premature buckling. Reinforced concrete specimens were strengthened by carbon or glass FRP wraps while plain FRP confined concrete specimens were also constructed and tested to evaluate comparatively the confining effects of steel stirrups, FRP wraps, or of dual confinement. The achieved strength, ductility and energy absorption levels of the specimens were quantified to assess the effect of the longitudinal bars. Finally, a handy design-oriented empirical strength model is proposed. According to the proposed approach, no estimation of effective stress or strain at failure of FRP jacket is necessary. The satisfactory accuracy of the predictions of the proposed model is demonstrated through comparison against existing models and over a large database of results on uniform confinement as well as over presented specimens.  相似文献   

4.
Analysis-oriented model (AOM) is a theoretical approach intended to analyze and design systems by applying the notions throughout the organization of a series of equations in one or more iterative cycle. The stress–strain curve of an fiber reinforced polymer (FRP) confined column is evaluated using an incremental procedure, which takes into account the interaction between the confining material and the column itself. Many AOMs have been developed for FRP-confined columns, while the prediction of the behavior of the jacketing with fiber reinforced mortar (FRM) is, currently, still a lack of the literature due to the relative recent development of studies about this new confining composite material. The aim of this paper is to present and discuss a new AOM able to deliver the axial stress–strain law of an axially loaded column made of concrete or masonry and with circular or square cross-section, when FRM-confinement is provided. A step-by-step iteration of the axial strain was adopted considering that the column reacts elastically and the FRM confinement remains un-cracked in each single step. The elastic secant modulus of the column was, thereafter, considered in order to catch its non-linear behavior and a further secant modulus was also computed for modelling the damage evolution of the FRM confinement when increasing the axial load. Finally, a parametric study allowed to check the correct interpretation of the phenomenon. Moreover, the theoretical versus the experimental comparison validated the accuracy of the proposed model.  相似文献   

5.
FRP约束混凝土的应力-应变关系   总被引:11,自引:0,他引:11  
陶忠  高献  于清  庄金平 《工程力学》2005,22(4):187-195
通过修正已有文献中提供的约束混凝土体积应变计算模型,并基于受定侧压力作用下混凝土的应力-应变关系模型,采用数值方法,全过程计算了具有被动约束特征的圆形截面纤维增强塑料(FRP)约束混凝土的应力-应变关系。结果表明,无论是对于具有强化特征还是具有软化特征的FRP约束混凝土,计算结果和实验结果及其他文献报道的实验结果均吻合良好。  相似文献   

6.
This study focuses on developing a mixed frame finite element formulation of reinforced concrete and FRP composite columns in order to give more accuracy not only to predict the global behavior of the structural system but also to predict the local damage in the cross-section. A hypo-elastic constitutive law of concrete is presented under the basis of a three-dimensional stress state in order to model the compressive behavior of confined concrete wrapped with FRP jackets. To predict the nonlinear load path-dependent confinement model of FRP-confined concrete, the strength enhancement of concrete was determined by the failure surface of concrete in a tri-axial stress state, and its corresponding peak strain was computed by the strain-enhancement factor proposed in this study. The behavior of FRP jacket was modeled using the two-dimensional classical lamination theory. The flexural behavior of concrete and composite members was defined using a nonlinear fiber cross-sectional approach. The results obtained by developed mixed finite element formulation were verified with the experiments of concrete composite columns and also were compared with a displacement-based finite element formulation. It is shown that the proposed formulation gives e more accurate results in the global behavior of the column system as well as in the local damage in the column sections.  相似文献   

7.
纤维增强聚合物复合材料(FRP)-钢复合圆管约束混凝土由于具有很好的综合性能,近年来得到了广泛的研究,尚缺乏完整的应力-应变关系全曲线计算模型。本文在综合作者现有研究成果的基础上,广泛收集了96个FRP-钢复合圆管约束混凝土柱的轴心受压试验结果,系统分析了试件参数的影响规律,提出了FRP-钢复合圆管约束混凝土的应力-应变关系曲线的完整计算模型,包括峰值应力、峰值应变、极限应力和极限应变的计算方法,并建议了应力-应变关系全曲线预测模型,模型较好地预测了FRP-钢复合圆管约束混凝土的应力-应变关系曲线的特征,预测结果与试验结果吻合较好。建议模型具有较好的通用性和准确性。   相似文献   

8.
The study presents the experimental behavior of reinforced concrete square section specimens, externally confined by carbon or glass Fiber Reinforced Polymer (FRP) sheets. The columns are subjected to axial compressive monotonic or repeated load-unload cycles gradually increasing up to failure. The research focuses on columns with longitudinal bars which are critical to premature buckling while examining their effect on lower limit cases of strengthening through FRP confinement. Experiments include also plain concrete FRP confined columns and columns with bars adequately supported by transverse steel reinforcement for comparison. External FRP strengthening covers a wide range of volumetric mechanical FRP confinement ratios allowing comparative investigations. A significant variation in the behavior of FRP confined concrete comes up when bars are unstable, for a light external strengthening scheme as well as for monotonic or cyclic loading. The lower limits proposed by existing recommendations for adequate FRP confinement strengthening of columns are examined.  相似文献   

9.
The analytical compressive behavior of concrete members reinforced with fiber-reinforced polymer (FRP) was examined. The variation in the shape of the transverse cross-section was analyzed. The bearing capacity and the increase in the maximum strain for members having a cross-section which was circular, square or square with round corners reinforced with FRP were determined. The proposed analytical model allows one to evaluate the confining pressure in ultimate conditions considering the effective confined cross-section and also allows one to determine the ultimate strain corresponding to FRP failure through a simplified energetic approach. Analytical results are then compared to experimental values available in the literature, showing good agreement.  相似文献   

10.
This study suggests a secondary dense lateral reinforcement for reinforced concrete (RC) columns that are located between the primary lateral reinforcement and concrete surface, which are used to delay the buckling of longitudinal reinforcement and increase the ductility of RC columns. ‘Dense’ means that the spacing of the lateral reinforcement is smaller than the maximum gravel size. This study conducted axial compressive tests on concrete cylinders confined by dense reinforcement in order to improve the effectiveness of the dense lateral reinforcement. FRP (Fiber Reinforced Polymer) rings were used for the reinforcement since they are corrosion resistant. The dense reinforcing method with FRP rings can successfully increase the peak strength of the concrete and the failure strain. The stress–strain curves of the confined concrete became almost bilinear with hardening behavior, which were similar to that of the concrete confined by the jackets of FRP sheets. This study also provides models of stress–strain in an axial direction and lateral strain. Based on the models, this study analyzes the confining effectiveness of the FRP rings on concrete.  相似文献   

11.
The present investigation provides a micro-mechanical model for the splitting failure analysis of fiber reinforced plastic (FRP) reinforced concrete members subjected to longitudinal tensile stresses. The model consists of three co-axial cylinders: (a) the inner elastic FRP rod; (b) the mid cracked part of concrete; and (c) the outer elastic part of concrete. The anisotropic properties of reinforcement, the compatibility of longitudinal strain at interface and the effect of Poisson's ratio of concrete are taken into account in the analysis. The method can be used to predict the stress distributions in the hybrid structure and the relations between the growth of cracks and the applied end forces. It is found that the number of splitting cracks and the material properties of the anisotropic FRP rods are not the dominant factors in splitting failure. It is also observed that neglecting Poisson's ratio of cracked concrete may under-estimate stresses in the hybrid structure.  相似文献   

12.
A new type of concrete columns was developed at the University of Alabama in Huntsville for new construction to achieve more durable and economical structures. The columns are made of concrete cores encased in a PVC tube reinforced with fiber reinforced polymer (FRP). The PVC tubes are externally reinforced with continuous impregnated fibers in the form of hoops at different spacings. The PVC acts as formwork and a protective jacket, while the FRP hoops provide confinement to the concrete so that the ultimate compressive strength and ductility of concrete columns can be significantly increased. The volume of fibers used in this hybrid column system is very modest compared to other existing confinement methods such as FRP tubes and FRP jackets. This paper discusses the stress-strain behavior of these new composite concrete cylinders under axial compression loading. Test variables include the type of fiber, volume of fiber, and the spacing between the FRP hoops. A theoretical analysis was performed to predict the ultimate strength, failure strain and the entire stress-strain curve of concrete confined with PVC-FRP tubes. Test results show that the external confinement of concrete columns by PVC-FRP tubes results in enhancing compressive strength, ductility and energy absorption capacity. A comparison between experimental and analytical results indicates that the models provide satisfactory predictions of ultimate compressive strength, failure strain and stress-strain response.  相似文献   

13.
External bonding of FRP plates or sheets has become a popular method for strengthening reinforced concrete structures. Stresses along the FRP-concrete interface are critical to the effectiveness of this technique because high stress concentration along the FRP-concrete interface can lead to the FRP debonding from the concrete beam. Although the short-term stress distribution along the FRP-concrete interface has been studied extensively, very few studies have been conducted on the long-term stress distribution, which closely simulates the behavior of the structure during the service-life. In this study, we develop a viscoelastic solution for the long-term interface stress distribution in a FRP plate strengthened reinforced concrete beam. In this solution, the RC beam and the FRP plate are modeled as elastic materials; while the adhesive layer is modeled as a viscoelastic material using the Standard Linear Solid model. Closed-form expressions of the interface stresses and deflection of the beam are obtained using Laplace transform and calculated using the Zakian’s numerical method. The validation of this viscoelastic solution is verified by finite element analysis using a subroutine UMAT based on the Standard Linear Solid model.  相似文献   

14.
External bonding of FRP plates or sheets has become a popular method for strengthening reinforced concrete structures. Stresses along the FRP–concrete interface are critical to the effectiveness of this technique because high stress concentration along the FRP–concrete interface can lead to the FRP debonding from the concrete beam. In this study, a novel analytical solution has been developed to predict the interface stress redistribution of FRP-strengthened reinforced concrete beams induced by the viscoelastic adhesive layer. Both the FRP plate and the RC beam are modeled as Timoshenko’s beams, connected through the adhesive layer. The adhesive layer is modeled as a three-parameter viscoelastic foundation (3PVF) using Standard Linear Solid model. The 3PVF model satisfies the equilibrium equation of the adhesive layer and the zero shear-stress boundary condition at the free edge. Closed-form expressions of the time-dependent interface stresses and deflection of the beam are obtained using Laplace transform. Finite element analysis is also conducted to verify the analytical solution using a subroutine UMAT based on the Standard Linear Solid model. Numerical results suggest that the stress concentrations within the FRP–concrete interface relax with time. The axial force in the FRP plate also reduces with time due to the creep of the adhesive layer. However, this relaxation is limited to a small zone close to the end of the FPR plate.  相似文献   

15.
董振华  韩强  杜修力 《工程力学》2013,30(12):57-64
针对纤维复合材料(FiberReinforcedPolymer,FRP)约束钢筋混凝土(RC)矩形空心截面墩的抗震性能分析问题,该文提出了一种考虑有效强度系数和面积配箍率的FRP有效侧向约束力的简化计算方法。并通过与试验体桥墩的墩顶水平位移-承载力、墩底截面转动变形-弯矩曲线的对比分析,验证了该文提出简化计算模型的正确性。最后,基于该文提出的简化计算方法,对不同种类FRP约束RC矩形空心截面墩截面的抗弯承载力、曲率、塑性转动能力等抗震性能参数进行了研究,结果表明环包FRP布对空心墩的延性贡献较大,对提高其承载力影响较小。  相似文献   

16.
A general mathematical model is developed to describe the stress–strain (fcεc) relationship of FRP confined concrete. The relationship is applicable to both circular and rectangular columns, and accounts for the main parameters that influence the stress–strain response. These include the area and material properties of the external FRP wraps, the aspect ratio of rectangular column sections, the corner radius used for FRP application, and the volumetric ratio and configuration of internal transverse steel. The proposed model reproduced accurately experimental results of stress–strain or load–deformation response of circular and rectangular columns. In addition to its importance in evaluating the effect of FRP confinement on the ultimate axial strength of concrete columns, the developed fcεc relationship can be employed very efficiently and effectively for analyzing the response of FRP confined concrete under different types of load application.  相似文献   

17.
纤维增强聚合物复合材料(FRP)约束混凝土的抗压强度是进行FRP加固混凝结构设计的重要参数。现有的FRP约束混凝土柱抗压强度模型大部分采用试验数据回归分析获得,只有极少数模型基于理论推导建立,因此有必要对基于理论推导建立的抗压强度模型进行扩展。本文通过对现有的FRP约束混凝土柱的抗压强度模型进行归纳和总结,并采用已发表文献的大量试验数据对其进行评估。然后基于Griffith破坏准则,提出一个可以同时预测FRP约束未损伤混凝土和损伤混凝土抗压强度统一模型并进行评估。评估结果表明,新建立的抗压强度模型可以较准确地预测FRP约束未损伤混凝土和损伤混凝土的抗压强度。   相似文献   

18.
为了给纤维增强聚合物基复合材料(FRP)加固腐蚀环境下钢筋混凝土圆柱的设计和施工提供参考,促进FRP加固钢筋混凝土圆柱的应用,本文通过加速腐蚀得到类似实际环境中已锈损钢筋混凝土圆柱,采用碳纤维增强聚合物基复合材料(CFRP)条带和玻璃纤维增强聚合物基复合材料(GFRP)条带分别对锈蚀钢筋混凝土圆柱进行加固,最后对加固后圆柱进行轴心受压试验,重点研究钢筋锈蚀率、FRP层数和种类对钢筋混凝土圆柱受压承载力的影响;基于对FRP条带间隔约束效应、钢筋锈蚀对混凝土截面及钢筋力学性能影响的研究与分析,提出FRP条带间隔约束锈蚀钢筋混凝土圆柱轴心受压承载力计算模型。试验实测值与模型计算值之比的平均值为1.020,变异系数为0.063,二者符合较好。  相似文献   

19.
A novel hybrid fiber reinforced polymer (FRP)–concrete structural system was applied to bridge superstructures. The hybrid FRP–concrete bridge superstructure systems are intended to have durable, structurally sound, and cost effective hybrid system that will take full advantage of the inherent and complementary properties of FRP materials and concrete. The proposed hybrid FRP–concrete system consists of trapezoidal FRP cell units surrounded by an FRP outer shell forming a bridge system. A thin layer of concrete was placed in the compression zone.

As a trial case, a prototype bridge superstructure was designed as a simply-supported single span one-lane bridge with a span length of 18.3 m. Performance of this superstructure was examined both experimentally and computationally. A test specimen, fabricated as a one-fourth scale model of the prototype bridge, was subjected to a series of loading tests: nondestructive tests (flexure, off-axis flexure, and negative flexure), and destructive tests (flexure and shear).

Results from both experimental and computational analysis confirmed that the proposed hybrid bridge superstructure system has an excellent performance from structural engineering point of view. Furthermore, it was shown that a detailed linear finite element analysis (FEA) could predict behavior of the test specimen under different service loading conditions.  相似文献   


20.
《Composites Part B》2007,38(2):265-276
Fiber reinforced polymer (FRP) lamina have been used widely in the last decade to enhance strength and deformation capacity of deficient reinforced concrete (RC) columns. Seismic assessment and retrofit of existing columns in buildings and bridge piers necessitate accurate prediction of the available deformation capacity. In this study, a new analytical model is proposed to represent potential plastic hinge regions of RC columns prior to and after FRP retrofit. A recently developed variable confined concrete representation is employed within the framework of fiber-discretized frame elements to model the compression zone of the FRP-confined region. Confinement distribution within this region is included through the use of a bond model, whereas the effect of lap splices are considered using an effective steel strain concept. Comparisons of analytical estimates with experimentally measured response show that the proposed model is capable of capturing essential features of the response such as strength degradation due to lap splice slippage, and failure due to FRP rupture. Furthermore, a detailed sensitivity study is conducted to determine the parameters whose uncertainty significantly affects the behavior. It is observed that, in estimating the response of existing deficient columns, parameters such as plastic hinge length, concrete strength and splice length are important sources of uncertainty. While for FRP-retrofitted columns, parameters such as jacket stiffness, dilatation strain at splice failure and yield strength of the reinforcing bars are more important sources of uncertainty.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号