首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 240 毫秒
1.
The effect of different inlet geometries on laminar air flow combined convection heat transfer inside a horizontal circular pipe has been experimentally investigated for Reynolds number range of 400–1600, and the Grashof number range from 3.12 × 105 to 1.72 × 106. The experimental setup consists of an aluminum circular pipe as a heated section with 30 mm inside diameter and 900 mm heated length (L/D = 30) with different inlet geometries. A wall boundary heating condition of a uniform heat flux was imposed. The inlet configurations used in this paper are calming sections having the same inside diameter as the heated pipe but with variable lengths of Lcalm. = 600 mm (L/D = 20), Lcalm. = 1200 mm (L/D = 40), Lcalm. = 1800 mm (L/D = 60), Lcalm. = 2400 mm (L/D = 80), sharp-edged and bell-mouth. It was found that the surface temperature values for calming section length corresponding to (L/D = 80) were higher than other inlet geometries due to the lower mass flow rate and higher flow resistance. It was also observed that the Nusselt number values for bell-mouth inlet geometry were higher than other inlet geometries due to the differences in the average temperatures and densities of the air. The average heat transfer results were correlated with an empirical correlation in terms of dependent parameters of Grashof, Prandtl and Reynolds numbers. The proposed correlation was compared with available literature and it shows reasonable agreement.  相似文献   

2.
In this paper, a fractal tree-like microchannel net heat sink (20 mm × 20 mm × 1.4 mm) for cooling of electronic chips was fabricated on a silicon wafers by advanced MEMS technology. The length, width and height of the entrance microchannel were 10 mm, 800 μm and 25 μm, respectively. The fractal dimension D and the circulation number m of the fractal tree-like microchannel net were 2 and 4, respectively. It is confirmed experimentally that the thermal efficiency (defined as heat transfer rate per unit power required) of such a fractal tree-like microchannel heat sink is much higher than that of the traditional parallel microchannel heat sink for the same heat transfer rate, the same temperature difference and the same inlet velocity.  相似文献   

3.
The present study experimentally investigates the performance of a 2-pass microchannel heat sink subject to non-uniform heating. The size of the microchannel heat sink is 132 mm × 82 mm × 6 mm with a rectangular channel of 1 mm × 1 mm. Three independent heaters having identical size (96 mm × 38.5 mm × 1 mm) is placed consecutively below the microchannel heat sink. Two kinds of manifolds are used for testing of the microchannel, one with a side entrance (type A) and the other with a front entrance (type B). Test results show that both maximum temperature and average temperature rise with the total input power, and this is applicable for both manifolds. For uniform heating condition, the maximum temperature for type B manifold is much lower than that for type A manifold due to a better flow distribution and heat transfer performance. The pressure drop is slightly reduced with the rise of supplied power. For non-uniform heating, the maximum temperature and the average temperature depend on the location of heaters. For the same supplied power with non-uniform heating, it is found that heater being placed at the inlet of the microchannel will give rise to a higher maximum temperature than that being placed at the rear of the heat sink. This phenomenon is especially pronounced when the inlet flowrate is comparatively small and becomes less noted as the inlet flowrate is increased to 0.7 L/min.  相似文献   

4.
An experiment on heat transport phenomena has been carried out in a two-phase thermosyphon with an adiabatic connecting pipe using water as the working fluid at atmospheric pressure. The thermosyphon has an upper liquid chamber and a lower vapor chamber, which are connected with an adiabatic pipe. A horizontal upward-facing heated surface is installed in the bottom of the lower vapor chamber.The size of the connecting pipe is an inner diameter Dp = 2, 3, 4, 5, 6 and 8 mm and a length L = 250, 500 and 1000 mm. As the heat is supplied into the thermosyphon, the temperature of heated surface starts fluctuating at a heat flux at which unstable vapor–liquid counter current flow is generated in the connecting pipe. Bubbles at the upper end of the connecting pipe were photographed when the temperature fluctuation started. It was found that the heat flux at the onset of the temperature fluctuation increases with an increase in Dp and then can be predicted well by Eq. (1), which was derived based on the flooding velocity presented by Wallis [G.B. Wallis, One dimensional two-phase flow, McGraw Hill, New York, 1969], with Cw = 0.7 for Dp = 5, 6 and 8 mm. Furthermore, we clarified that the cause of this fluctuation comes from the inlet effect of the connecting pipe and we demonstrated this finding using a bell mouth, which was installed at either the bottom end or both ends of the connecting pipe.  相似文献   

5.
A small scale steam jet ejector experimental setup was designed and manufactured. This ejector setup consists of an open loop configuration and the boiler operate in the temperature range of Tb = 85–140 °C. The typical evaporator liquid temperatures range from Te = 5 °C to 10 °C while the typical water-cooled condenser pressure ranges from Pc = 1.70 kPa to 5.63 kPa (Tc = 15–35 °C). The boiler is powered by two 4 kW electric elements while a 3 kW electric element simulates the cooling load in the evaporator. The electric elements are controlled by means of variacs.Primary nozzles with throat diameters of 2.5 mm, 3.0 mm and 3.5 mm are tested while the secondary ejector throat diameter remains unchanged at 18 mm. These primary nozzles allow the boiler to operate in the temperature range of Tb = 85–110 °C. When the nozzle throat diameter is increased, the minimum boiler temperature decreases. A primary nozzle with a 3.5 mm throat diameter was tested at a boiler temperature of Tb = 95 °C, an evaporator temperature of Te = 10 °C and a critical condenser pressure of Pcrit = 2.67 kPa (22.6 °C). The system's COP is 0.253.In a case study the experimental data of a solar powered steam jet ejector air conditioner is investigated. Solar powered steam ejector air conditioning systems are technical and economical viable when compared to conventional vapour compression air conditioners. Such a system can either utilise flat plate or evacuated tube solar thermal collectors depending on the type of solar energy available.  相似文献   

6.
In this study, radiative and convective heat transfer coefficients at the ceiling are determined for a cooled ceiling room. Firstly, convective heat transfer is simulated numerically neglecting the radiative heat transfer at the surfaces (εf = εw = εc = 0), then, radiative heat transfer is calculated theoretically for different surface emissivities (εf = εw = εc = 0.5, 0.6, 0.7, 0.8 and 0.9) for different room dimensions (3 × 3 × 3, 4 × 3 × 4 and 6 × 3 × 4 m) and thermal conditions (Tf = 25 °C, Tw = 28–36 °C and Tc = 0–25 °C). Numerical data is compared with the results of correlations based on experimental data given in literature. New equations related to convective and total (including the effect of convection and radiation) heat transfer coefficients for ceiling are found in the current study.  相似文献   

7.
An experimental investigation has been carried out to study the heat transfer coefficient and friction factor by using artificial roughness in the form of specially prepared inverted U-shaped turbulators on the absorber surface of an air heater duct. The roughened wall is uniformly heated while the remaining three walls are insulated. These boundary conditions correspond closely to those found in solar air heaters.The experiments encompassed the Reynolds number range from 3800 to 18000; ratio of turbulator height to duct hydraulic mean diameter is varied from, e/Dh = 0.0186 to 0.03986 (Dh = 37.63 mm and e = 0.7 to 1.5 mm) and turbulator pitch to height ratio is varied from, p/e = 6.67 to 57.14 (p = 10 to 40 mm). The angle of attack of flow on turbulators, α = 90° kept constant during the whole experimentation. The heat transfer and friction factor data obtained is compared with the data obtained from smooth duct under similar geometrical and flow conditions. As compared to the smooth duct, the turbulator roughened duct enhances the heat transfer and friction factor by 2.82 and 3.72 times, respectively. The correlations have been developed for area averaged Nusselt number and friction factor for turbulator roughened duct.  相似文献   

8.
The paper presents the numerical analysis on microchannel laminar heat transfer and fluid flow of nanofluids in order to evaluate the suitable thermal conductivity of the nanoparticles that results in superior thermal performances compared to the base fluid. The diameter ratio of the micro-tube was Di/Do = 0.3/0.5 mm with a tube length L = 100 mm in order to avoid the heat dissipation effect. The heat transfer rate was fixed to Q = 2 W. The water based Al2O3, TiO2 and Cu nanofluids were considered with various volume concentrations ϕ = 1,3 and 5% and two diameters of the particles dp = 13 nm and 36 nm. The analysis is based on a fixed Re and pumping power Π, in terms of average heat transfer coefficient and maximum temperature of the substrate. The results reveal that only the nanofluids with particles having very high thermal conductivity (λCu = 401 W/m K) are justified for using in microcooling systems. Moreover, the analysis is sensitive to both the comparison criteria (Re or Π) and heat transfer parameters (have or tmax).  相似文献   

9.
The ice block at initial temperature Tis = 0 °C is fixed at the center of a long, prismatic enclosure with isothermal vertical walls and insulated horizontal walls. The enclosure is completely filled with water at initial temperature Til = 0 °C. Six numerical simulations were performed by varying vertical wall temperatures from TW = 2 to 12 °C (range of Rayleigh number from 4.22 × 106 to 2.28 × 107). In the case of TW > 8 °C the ice melts faster from above and for TW < 8 °C from below. In the case of TW = 8 °C, two vortices are separated by nearly vertical 4 °C isotherm and the average Nusselt number remains constant during the convection dominated regime.  相似文献   

10.
This investigation quantifies the change in mass transfer within a confined gas volume subjected to mixing by loose spheres. A cylindrical vessel containing between 1 and 50 Teflon spheres in a tracer gas is vigorously shaken. Extractive sampling provides time histories of tracer gas concentrations extracted from the vessel. Fitting the results from a simple 1-D mass transfer model to the experimental data yields an effective mass transfer coefficient k′ for each experimental condition. Compared to diffusive mass transfer where k = Dab = 7.58 × 10−6 m2/s, k′ exhibits a cubic dependency on the number of spheres with a maximum at 17 spheres where k = 3.5 × 10−3 m2/s.  相似文献   

11.
The paper reports on the results of heat transfer measurements in hexagonal and in-line arrays of impinging jets for Reynolds numbers (based on the nozzle diameter Dm) ranging from 5 × 103 to 2 × 104. Liquid crystal thermography (LCT) was used to determine the temperature distribution on the flat impingement plate. The distance between the impingement plate and the nozzle exit plane varied between 3Dm and 10Dm, while the spacing between the nozzles varied between 2Dm and 6Dm. The experiments indicate that the multiple-jet heat transfer is strongly influenced by jet interactions, which, in turn, depend on the parameters mentioned above. The data set was used to construct a new correlation for the (area-averaged) Nusselt number that takes the interactions into account.  相似文献   

12.
This paper reports on detailed measurements of the turbulent flow in the stagnation region of a single impinging jet issuing from a round pipe with diameter D and a length of 76D. The distance between the pipe exit and the flat impingement plate is 2D, and the Reynolds number (based on the bulk velocity and pipe diameter) is 2.3 × 104. Mean velocity components and Reynolds stresses were determined by using a two-component LDA. A modified one-component LDA was used to perform near-wall measurements with minimum wall distances of approximately 40 μm. PIV measurements were taken in a small field of view (approximately 4 × 5 mm2) to study instantaneous reversals in the near wall region.  相似文献   

13.
Transmission of single-cell and spinning detonation waves in C2H4 + 3(O2 + βN2) mixtures through a 2-D sudden expansion experimentally studied using high-speed cinematography and soot film visualization. Nitrogen dilution ratio, β, is utilized to control cell size and detonation mode. Detonation wave of ethylene/oxygen/nitrogen mixture was initiated via DDT in the 1 mm × 1 mm cross-section and 250 mm long initiator channel before propagating into the 3 mm × 1 mm receptor channel. Visualizations show that detonation waves were extinct and accompanied with abrupt decrease in visible reaction front propagating velocities right after passing through the sudden expansion. However, re-acceleration of the reaction front and re-initiation of the detonation wave were observed downstream in the expanded receptor section. Two re-initiation modes with large disparity in the re-initiation distance were experimentally characterized. For mixtures with nitrogen dilution ratio equals 0.3 or less, the cellular detonation front propagated with single cell in the initiator section before entering the sudden expansion. The re-initiation distance was less than 50 mm and was likely achieved via shock reflection. Velocity characterization shows that steady propagating speed of the detonation wave is ~100 m/s higher in receptor section than in the initiator section. Since the cell size became larger than 1 mm for mixtures with β ? 0.3, the detonation wave propagated in spinning detonation mode before transmitting into the expanded section. The reaction front would have to go through another DDT process to reach detonation state in the receptor section, and the re-initiation distance was increased to more than 150 mm. Moreover, step height of the sudden expansion was proposed as the characteristic length scale to obtain a unified non-dimensional correlation between re-initiation distance and detonation cell size.  相似文献   

14.
《Applied Thermal Engineering》2007,27(8-9):1236-1247
Experiments have been conducted to study the local and average heat transfer by mixed convection for hydrodynamically fully developed, thermally developing and thermally fully developed laminar air flow in an inclined circular cylinder. The experimental setup consists of aluminum cylinder as test section with 30 mm inside diameter and 900 mm heated length (L/D = 30), is subjected to a constant wall heat flux boundary condition. The investigation covers Reynolds number range from 400 to 1600, heat flux is varied from 70 W/m2 to 400 W/m2 and cylinder angles of inclination including 30°, 45° and 60°. The hydrodynamically fully developed condition has been achieved by using aluminum entrance section pipes (calming sections) having the same inside diameter as test section pipe but with variable lengths. The entrance sections included two long calming sections, one with length of 180 cm (L/D = 60), another one with length of 240 cm (L/D = 80) and two short calming sections with lengths of 60 cm (L/D = 20), 120 cm (L/D = 40). The results present the surface temperature distribution along the cylinder length, the local and average Nusselt number distribution with the dimensionless axial distance Z+. For all entrance sections, the results showed an increase in the Nusselt number values as the heat flux increases and as the angle of cylinder inclination moves from θ = 60° inclined cylinder to θ = 0° horizontal cylinder. The mixed convection regime has been bounded by the convenient selection of Re number range and the heat flux range, so that the obtained Richardson numbers (Ri) is varied approximately from 0.13 to 7.125. The average Nusselt numbers have been correlated with the (Rayleigh numbers/Reynolds numbers) in empirical correlations.  相似文献   

15.
An experiment is carried out here to investigate the characteristics of the evaporation heat transfer for refrigerants R-134a and R-407C flowing in horizontal small tubes having the same inside diameter of 0.83 or 2.0 mm. In the experiment for the 2.0-mm tubes, the refrigerant mass flux G is varied from 200 to 400 kg/m2 s, imposed heat flux q from 5 to 15 kW/m2, inlet vapor quality xin from 0.2 to 0.8 and refrigerant saturation temperature Tsat from 5 to 15 °C. While for the 0.83-mm tubes, G is varied from 800 to 1500 kg/m2 s with the other parameters varied in the same ranges as those for Di = 2.0 mm. In the study the effects of the refrigerant vapor quality, mass flux, saturation temperature and imposed heat flux on the measured evaporation heat transfer coefficient hr are examined in detail. The experimental data clearly show that both the R-134a and R-407C evaporation heat transfer coefficients increase almost linearly and significantly with the vapor quality of the refrigerant, except at low mass flux and high heat flux. Besides, the evaporation heat transfer coefficients also increase substantially with the rises in the imposed heat flux, refrigerant mass flux and saturation temperature. At low R-134a mass flux and high imposed heat flux the evaporation heat transfer coefficient in the smaller tubes (Di = 0.83 mm) may decline at increasing vapor quality when the quality is high, due to the partial dryout of the refrigerant flow in the smaller tubes at these conditions. We also note that under the same xin, Tsat, G, q and Di, refrigerant R-407C has a higher hr when compared with that for R-134a. Finally, an empirical correlation for the R-134a and R-407C evaporation heat transfer coefficients in the small tubes is proposed.  相似文献   

16.
This study presents a novel pulsating heat pipe (PHP) concept that is functional even when PHP is with fewer turns and is operated horizontally. Two heat pipes were made of copper capillary tubes with an overall size of 122 mm × 57 mm × 5.5 mm is investigated, one had 16 parallel square channels having a uniform cross-section of 2 mm × 2 mm (uniform CLPHP), and the other had 16 alternative size of parallel square channels (non-uniform CLPHP; a cross-section 2 mm × 2 mm and a cross-section of 1 mm × 2 mm in alternating sequence). Test results showed that the performance of PHP rises with the inclination but the uniform channel CLPHP is not functional at horizontal configuration whereas the proposed non-uniform design is still functional even at horizontal arrangement. The thermal resistance for uniform PHP is relative insensitive to change of inclination when the inclination angle exceeds certain threshold value.  相似文献   

17.
In the present paper numerical modeling of a water flow through microtubes was made in order to analyze the behavior of the Poiseuille constant for the case of heating fluid flow inside the microtube. The microtube from the experimental research presented in [D. Lelea, S. Nishio, K. Takano, International Journal of Heat and Mass Transfer 47, pp. 2817–2830 (2004). (Journal Article)] [5] was used as a model. The length to diameter ratio of the tube was very large (L/Di = 1200), and a tube diameter was Di = 0.5 mm. Only a portion of the tube was heated with a Joule heating and the heating length was Lh = 250 mm. The working fluid was distilled water and a laminar regime is considered Re < 800. The input power was 2 W.  相似文献   

18.
In this paper we present the results on experimental investigation of the local opposing mixed convection heat transfer in the vertical flat channel with symmetrical heating in a laminar–turbulent transition region. The experiments were performed in airflow (p = 0.1–1.0 MPa) in the range of Re from 1.5 × 103 to 6.6 × 104 and Grq up to 1 × 1011 at the limiting condition qw1 = qw2 = const. The analysis of the results revealed significant increase in the heat transfer with increasing of air pressure (Gr number). Also sharp increase in heat transfer was noticed in the region with vortex flow in comparison with the turbulent flow region.  相似文献   

19.
This paper presents a methodology for the estimation of temperature dependent heat transfer coefficient for a vertical rectangular fin by using the inverse heat transfer method with Liquid crystal thermography (LCT) data. Steady state, laminar natural convection experiments have been done on a vertical rectangular fin of size 150 × 250 × 4, (L × w × t, all dimensions are in mm). The variation of heat transfer coefficient is considered as a power law function of temperature excess (h = aoθb) and is derived from the basic Nusselt number equation used for laminar natural convection, Nu = aRab. With this functional form, the one dimensional fin equation in finite difference form is repeatedly solved using the Gauss–Seidel iterative method. Treating this as a one parameter estimation in ‘a’ the sum of the squares of the difference between the simulated and Thermochromic Liquid Crystal (TLC) measured temperatures is minimized with the Golden section search algorithm to retrieve ‘a’. Estimate of ‘a’ and the accompanying uncertainties are first reported for synthetically generated temperature distribution for assumed values of ‘a’. The effect of noise on the estimate of ‘a’ is discussed. This is followed by retrievals with experimentally obtained TLC temperature distribution for a range of heat inputs to the fin base. The required temperature distributions for accomplishing the retrievals over the surface are obtained using calibrated R40C5W Thermochromic Liquid Crystal (TLC) sheets. As an additional proof of the accuracy of the method, the retrieved value of ‘a’ is used to simulate the temperature distribution in the fin which is then compared with the actual TLC measured temperature distribution.  相似文献   

20.
Experiments on chimney systems were performed using a copper electroplating system based on the analogy concept. Numerical investigations were carried out to examine the influence of an anode placed at the center of a chimney system. The chimney heights were varied for RaD = 7.23 × 109 and Sc = 2094. As the chimney height increased, the heat transfer rates were enhanced but the enhancement rate decreased. Comparison of the numerical results with and without the anode showed different velocity and temperature profiles near the anode. However, those near the heated wall exhibited similar values. Thus, the influence of the anode was negligible at a heated wall. This study provides a theoretical background of using an anode to simulate chimney phenomena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号