首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Experiments were performed to compare the shell-side heat transfer coefficient and pressure drop of a helically baffled heat exchanger with petal-shaped finned tubes to those of low-finned tubes for oil cooling using water as a coolant. The experimental results showed that for the heat exchanger with petal-shaped finned tubes, the shell-side heat transfer coefficients were augmented by 28–48%, yet the shell-side pressure drops were reduced by 35–75% at the same volumetric flow rates of oil. The possible mechanisms responsible for this heat transfer enhancement were analyzed for helically baffled heat exchanger combined with petal-shaped finned tubes.  相似文献   

2.
Generally, internal micro‐fin tubes are used for increasing the life and performance of electronic devices. The micro‐fins enhance the heat transfer rate by increasing the surface area with an increase of the pressure drop. In this study, heat transfer and pressure drop are analyzed by varying Reynolds number with the increase in the number of fins in tubes. Heat transfer and pressure drop, together with turbulence kinetic energy of micro‐fin tubes (helical and straight) and a smooth tube, have been evaluated for different Reynolds numbers (60 000, 40 000, 20 000, and 2000) at a constant temperature of 350 K, which clearly establishes laminar to turbulent flow. It is observed that the helical micro‐fin tube has a better result compared with the straight micro‐fin tube and smooth tube at Reynolds numbers 60 000, 40 000, and 20 000 at velocity 2, 1, and 0.5 m/s, respectively. This study is an attempt to establish a comparison of different micro‐fin geometries with varying Reynolds numbers, concluding that a high Reynolds number is suitable for the same.  相似文献   

3.
This study investigates passive heat transfer enhancement techniques to determine the distribution of temperature and static pressure in test tubes, the friction factor, the heat flux, the temperature difference between the inlet and outlet fluid temperatures, the pressure drop penalty and the numerical convective heat transfer coefficient, and then compares the results to the experimental data of Zdaniuk et al. It predicts the single-phase friction factors for the smooth and enhanced tubes by means of the empirical correlations of Blasius and Zdaniuk et al. This study performed calculations on a smooth tube and two helically finned tubes with different geometric parameters also used in the analyses of Zdaniuk et al. It also performed calculations on two corrugated tubes in the simulation study. In Zdaniuk et al.'s experimental setup, the horizontal test section was a 2.74 m long countercurrent flow double tube heat exchanger with the fluid of water flowing in the inner copper tube (15.57–15.64 mm i.d.) and cooling water flowing in the annulus (31.75 mm i.d.). Their test runs were performed at a temperature around 20 °C for cold water flowing in the annulus while Reynolds numbers ranged from 12,000 to 57,000 for the water flowing in the inner tube. A single-phase numerical model having three-dimensional equations is employed with either constant or temperature dependent properties to study the hydrodynamics and thermal behaviors of the flow. The temperature contours are presented for inlet, outlet and fully developed regions of the tube. The variations of the fluid temperature and static pressure along tube length are shown in the paper. The results obtained from a numerical analysis for the helically tubes were validated by various friction factor correlations, such as those found by Blasius and Zdaniuk et al. Then, numerical results were obtained for the two corrugated tubes as a simulation study. The present study found that the average deviation is less than 5% for the friction factors obtained by the Fluent CFD program while Blasius's correlation has the average deviation of less than 10%. The corrugated tubes have a higher heat transfer coefficient than smooth tubes but a lower coefficient than helically finned tubes. The paper also investigates the pressure drop penalty for the heat transfer enhancement.  相似文献   

4.
两种针形管单排管/单管传热及阻力性能试验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
在一低速风洞中,针对两种不同开头的高肋针形管进行了单排管/单管传热及阻力性能的试验研究,获得了相应的阻力及传热准则关系,并将其与光管及低肋针形管进行了性能比较,为工业设计应用提供了有价值的数据。  相似文献   

5.
The peripheral-finned tube is a new geometry aimed at avoiding moisture-condensate blockage hindering of the air-side heat transfer, by allowing for robust air flow pathways. It consists of a porous structure formed by periodic, radial-hexagonal fin arrangements of different radial extents mounted with a 30° offset from its neighboring level. Here, the air-side pressure drop and the heat transfer characteristics of five different heat exchanger prototypes with different geometric characteristics, such as the radial fin length, fin distribution, and heat exchanger length, were evaluated experimentally in an open-loop wind-tunnel calorimeter. The results demonstrate the effective performance, i.e., the pressure drop and heat transfer characteristics, of this new heat exchanger. A one-dimensional theoretical model based on the porous media treatment was also developed to predict the thermal-hydraulic behavior of the heat exchanger. The model incorporates the actual fin geometry into the calculation of the air-side porosity. The air-side permeability is calculated according to the Kozeny–Carman model and the particle-diameter based analysis. The model predicts the experimental data within a few percent RMS, depending on the correlations used for the friction coefficient and interstitial Nusselt number.  相似文献   

6.
《Applied Thermal Engineering》2007,27(5-6):1001-1008
In this paper, the heat transfer coefficient and pressure drop on the shell side of a shell-and-tube heat exchanger have been experimentally obtained for three different types of copper tubes (smooth, corrugated and with micro-fins). Also, experimental data has been compared with theoretical data available. Correlations have been suggested for both pressure drop and Nusselt number for the three tube types. A shell-and-tube heat exchanger of an oil cooler used in a power transformer has been modeled and built for this experimental work in order to investigate the effect of surface configuration on the shell side heat transfer as well as the pressure drop of the three types of tube bundles. The bundles with the same geometry, configuration, number of baffles and length, but with different external tube surfaces inside the same shell were used for the experiment. Corrugated and micro-fin tubes have shown degradation of performance at a Reynolds number below a certain value (Re < 400). At a higher Reynolds number the performance of the heat exchanger greatly improved for micro-finned tubes.  相似文献   

7.
Experiments were conducted to investigate the effect of nanofluid on turbulent heat transfer and pressure drop inside concentric tubes. Water and SiO2 with mean diameter of 30 nm were chosen as base fluid and nano-particles, respectively. Experiments were performed for plain tube and five roughened tube with various heights and pitches of corrugations. Results show that adding the nano-particles in tube with high height and small pitch of corrugations augments the heat transfer significantly with negligible pressure drop penalty. It is discussed on relative Nusselt number and thermal performance of heat exchanger.  相似文献   

8.
In this paper an analysis of laminar heat transfer and fluid flow in a wavy fin-and-tube heat exchanger has been carried out. Three-dimensional (3D) numerical simulation results of a circular tube heat exchanger were compared with published numerical and experimental results. The computational fluid dynamics (CFD) procedure was validated by comparing average Nusselt numbers, and good agreement between published and calculated results has been accomplished. The influence of inlet air velocity, varying from 0.5 to 5 m s?1, as well as fin pitch, varying from 0.4 to 4 mm, on heat transfer and pressure drop conditions has been studied. The results have shown that there is an optimal fin pitch for each air velocity, which gives the best heat exchanger performance from the heat transfer point of view.  相似文献   

9.
An investigation on flow boiling heat transfer and pressure drop of HFC-134a inside a vertical helically coiled concentric tube-in-tube heat exchanger has been experimentally carried out. The test section is a six-turn helically coiled tube with 5.786-m length, in which refrigerant HFC-134a flowing inside the inner tube is heated by the water flowing in the annulus. The diameter and the pitch of the coil are 305 mm and 45 mm, respectively. The outer diameter of the inner tube and its thickness are respectively 9.52 and 0.62 mm. The inner diameter of the outer tube is 29 mm. The average vapor qualities in test section were varied from 0.1 to 0.8. The tests were conducted with three different mass velocities of 112, 132, and 152 kg/m2-s. Analysis of obtained data showed that increasing of both the vapor qualities and the mass fluxes leads to higher heat transfer coefficients and pressure drops. Also, it was observed that the heat transfer coefficient is enhanced and also the pressure drop is increased when a helically coiled tube is used instead of a straight tube. Based on the present experimental results, a correlation was developed to predict the flow boiling heat transfer coefficient in vertical helically coiled tubes.  相似文献   

10.
Pressure drop and heat transfer characteristics of air in three annular tubes with different internal longitudinal fins were investigated experimentally at uniform wall heat flux. The tested tubes have a double‐pipe structure with the inner blocked tube as an insertion. Three different kinds of fins, plain rectangle fin, plain rectangle fin with periodical ridges and wave‐like fin, were located peripherally in the annulus. The friction factor and Nusselt number can be corrected by a power‐law correction in the Reynolds number range tested. It was found that the tube with periodical ridges on the plain fin or with wave‐like fin could augment heat transfer; however, the pressure drop was increased simultaneously. In order to evaluate the comprehensive heat transfer characteristics of the tested tubes, two criteria for evaluating the comprehensive thermal performance of tested tubes were adopted. They are: 1) evaluating the comprehensive heat transfer performance under three conditions: identical mass flow, identical pumping power, and identical pressure drop; 2) the second law of thermodynamics, i.e., the entropy generation. According to the two different evaluating methods, it was found that the tube with wave‐like fins provided the most excellent comprehensive heat transfer performance among the three tubes, especially when it was used under higher Reynolds number conditions. © 2007 Wiley Periodicals, Inc. Heat Trans Asian Res, 37(1): 29–40, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20186  相似文献   

11.
Air-side heat transfer and friction characteristics of nine kinds of fin-and-tube heat exchangers, with a large number of tube rows (6, 9, and 12, respectively) and large diameter of tubes (18 mm), are experimentally investigated. The test samples consist of three types of fin configurations: plain fin, slit fin, and fin with delta-wing longitudinal vortex generators. The working fluid in the tube is steam. Results show that when the number of tube is larger than 6, the heat transfer and friction performance for three kinds of fins is independent of the number of tube rows, and slit fin provides higher heat transfer and pressure drop than the other two fins. The heat transfer and friction factor correlations for all the heat exchangers were acquired with Reynolds numbers ranging from 4000 to 10000. The air-side performance of heat exchangers with plain fin, slit fin, and longitudinal vortex-generator fin were evaluated under three sets of criteria, and the results showed that the heat exchanger with slit fin has better performance than that with vortex-generator fin, especially at high Reynolds numbers.  相似文献   

12.
Shell and tube heat exchanger with single twisted tube bundle in five different twist angles, are studied using computational fluid dynamics (CFD) and compared to the conventional shell and tube heat exchanger with single segmental baffles. Effect of shell-side nozzles configurations on heat exchanger performance is studied as well. Heat transfer rate and pressure drop are the main issues investigated in the paper. The results show that, for the same shell-side flow rate, the heat transfer coefficient of heat exchanger with twisted tube bundle is lower than that of the heat exchanger with segmental baffles while shell-side pressure drop of the former is even much lower than that of the latter. The comparison of heat transfer rate per unit pressure drop versus shell-side mass flow rate shows that heat exchanger with twisted tube bundle in both cases of perpendicular and tangential shell-side nozzles, has significant performance advantages over the segmental baffled heat exchanger. Optimum bundle twist angles for such exchangers are found to be 65 and 55° for all shell side flow rates.  相似文献   

13.
Numerical investigation of fluid flow and heat transfer characteristics over louvered fins and flat tube in compact heat exchangers is presented in this study. Three-dimensional simulations of single and double row tubes with louvered fins have been conducted. Simulations are performed for different geometries with varying louver pitch, louver angle, fin pitch and tube pitch and for different Reynolds number. Conjugate heat transfer and conduction through the fins are considered. The air-side performance of heat exchanger is evaluated by calculating Stanton number and friction factor. The results are compared with experiment and a good agreement is observed. The local Nusselt number variation along the top surface of the louver is calculated and effects of geometrical parameters on the average heat transfer coefficient is computed. Design curves are obtained which can used to predict the heat transfer and the pressure drop for a given louver geometry.  相似文献   

14.
ExperimentalStudyonHeatTransferandPressureDropCharacteristicsofFourTypesofPlateFin-and-TUbeHeatExchangerSurfaces¥H.J.Kang;W.L...  相似文献   

15.
This paper presents a simple, efficient, robust, optimum design methodology for the design of a high heat transfer and low pressure drop cross-flow shell and tube heat exchanger with integral low fin tubes. This type of heat exchanger has the potential for application in the design of coolers in hypersonic wind tunnels to cool the air that emerges from the diffuser section of the wind tunnel. The methodology described here allows for the design and optimization of any type of heat exchanger that has constraints on pressure drop, as well as the design of an exchanger for very low pressure drop on the shell side fluid.  相似文献   

16.
In this work the effect of the elbow-bend geometry and the effect of the tube arrangement on the performance of air-to-water heat exchanger is studied experimentally. In elbow-bend heat exchanger, the direction of the working fluid is bended at 90 degrees to its inlet direction. The heating or cooling fluid flows inside straight tubes while the working fluid flows past the tubes along an elbow pass. Three different types of the geometry of the elbow with three different tube bank arrangements were studied. The results were plotted and analyzed to clarify the effects of the elbow-bend geometry, the tube bank arrangements and the dead volume in the heat exchanger on the heat transfer and pressure drop. Two empirical correlations were deduced for each design, one to predict the relation between Nusselt and Reynolds numbers, while the other relation is between the friction factor and Reynolds number. This work was done to select the more suitable design to be used as a heater or a cooler in Stirling machines.  相似文献   

17.
In this study, fully developed laminar flow and convective heat transfer in an internally finned tube heat exchanger are investigated numerically. The flow is assumed to be both hydrodynamically and thermally developed with uniform outside wall temperature. Parameters of the thickness, length, and number of fins and thermal conductivity ratio between fin and working fluid are varied to obtain the friction factor as well as Nusselt number. The results show that the heat transfer improves significantly if more fins are used; however, the pressure drop turns out to be large in this heat exchanger. In addition, it is found that the emergence of closed-loop isotherms between the areas of two neighboring fins leads to heat transfer enhancement in the internally finned tube. When the fin number is smaller than 14, there appears a maximum Nusselt number at about 0.8 of the dimensionless fin length. Finally, an experiment is conducted to verify the numerical results.  相似文献   

18.
The exhaust gas of heavy duty diesel engines can provide an important heat source that may be used in a number of ways to provide additional power and improve overall engine efficiency. The sizing of a heat exchanger that can manage the heat load and still be of reasonable size and weight without excessive pressure drop is of significant importance especially for truck applications. This is the subject of the present work. To approach the problem, a total of five different configurations are investigated and a comparison of conventional and state of the art heat transfer enhancement technologies is included. Two groups of configurations are examined: (a) a classical shell and tube heat exchanger using staggered cross-flow tube bundles with smooth circular tubes, finned tubes and tubes with dimpled surfaces and (b) a cross-flow plate heat exchanger, initially with finned surfaces on the exhaust gas side and then with 10 ppi and 40 ppi metal foam material substituting for the fins. Calculations were performed, using established heat exchanger design methodologies and recently published data from the literature to size the aforementioned configurations. The solutions provided reduce the overall heat exchanger size, with the plate and fin type consisting of plain fins presenting the minimum pressure drop (up to 98% reduction compared to the other configurations), and the 40 ppi metal foam being the most compact in terms of size and weight. Durability of the solutions is another issue which will be examined in a future investigation. However, coupling of the exhaust heat exchanger after a particulate trap appears to be the most promising solution to avoid clogging from soot accumulation.  相似文献   

19.
The present study investigated the effect of internal aluminum fins with a star-shape cross-section on the heat transfer enhancement and pressure drop in a counterflow heat exchanger. A concentric-tube heat exchanger was used with water as the working fluid. The heat transfer rate increased by 12–51% over a plain tube value, depending on internal fin configurations used. However, the pressure drop also increased substantially by 286–399%. The results showed that a straight-fin configuration is the best to produce a heat transfer increase in a counterflow heat exchanger. Twisted fin configurations did not further increase the heat transfer rate.  相似文献   

20.
Steady heat transfer enhancement has been studied in helically coiled-tube heat exchangers. The outer side of the wall of the heat exchanger contains a helical corrugation which makes a helical rib on the inner side of the tube wall to induce additional swirling motion of fluid particles. Numerical calculations have been carried out to examine different geometrical parameters and the impact of flow and thermal boundary conditions for the heat transfer rate in laminar and transitional flow regimes. Calculated results have been compared to existing empirical formulas and experimental tests to investigate the validity of the numerical results in case of common helical tube heat exchanger and additionally results of the numerical computation of corrugated straight tubes for laminar and transition flow have been validated with experimental tests available in the literature. Comparison of the flow and temperature fields in case of common helical tube and the coil with spirally corrugated wall configuration are discussed. Heat exchanger coils with helically corrugated wall configuration show 80–100% increase for the inner side heat transfer rate due to the additionally developed swirling motion while the relative pressure drop is 10–600% larger compared to the common helically coiled heat exchangers. New empirical correlation has been proposed for the fully developed inner side heat transfer prediction in case of helically corrugated wall configuration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号