首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract

The need to simultaneously reduce vehicle emissions and increase the safety of passengers is encouraging the automotive industry to incorporate new technologies and materials into today's vehicles. To remain competitive, the steel industry has developed steel grades with increased energy absorbing properties allowing down gauging of body in white components to address the competition from alternative materials such as aluminium alloys and composites. Two of the more important developments are the introduction of dual phase (DP) and transformation induced plasticity (TRIP) grades for the automotive industry. These grades offer superior strength/formability and work hardening properties compared to conventional high strength grades of similar tensile strength. Utilising thinner gauge components with increased energy absorbing properties would permit addressing the mass/safety issues by the automotive industry. This paper relates the crash performance of a range of both commercial and experimental DP and TRIP grades. Dynamic tensile testing was performed at low and very high strain rates within the range of 0·001–200 s?1, to allow an extensive analysis of the effect of strain rate on the material properties. Crash testing was also performed on closed top hat sections at low, medium and high strain rates and the results compared to the dynamically tested tensile specimens. This study helped clarify the enhanced performance offered by high strength DP and TRIP strip steel grades during dynamic tensile testing and impact loading conditions. This advantageous behaviour is attributed to the favourable microconstituents present in these novel grades and their deformation characteristics. This paper concentrates only on the crash properties measured from dynamic tensile tests. The microstructural analysis is presented in a separate publication.  相似文献   

2.
Conventional dual phase (DP) steel (0.08C–0.81Si–1.47Mn–0.03Al wt.%) was manufactured using simulated strip casting schedule in laboratory. The average grain size of prior austenite was 117 ± 44 μm. The continuous cooling transformation diagram was obtained. The microstructures having polygonal ferrite in the range of 40–90%, martensite with small amount of bainite and Widmanstätten ferrite were observed, leading to an ultimate tensile strength in the range of 461–623 MPa and a corresponding total elongation in the range of 0.31–0.10. All samples exhibited three strain hardening stages. The predominant fracture mode of the studied steel was ductile, with the presence of some isolated cleavage facets, the number of which increased with an increase in martensite fraction. Compared to those of hot rolled DP steels, yield strength and ultimate tensile strength are lower due to large ferrite grain size, coarse martensite area and Widmanstätten ferrite.  相似文献   

3.
Recently developed advanced high-strength steels with multiphase microstructures show interesting bake-hardening (BH) properties. This research work aims to quantify the effect of BH on dual-phase (DP) and transformation induced plasticity (TRIP) steel. Different pre-strains from 0% to 10% with a subsequent BH annealing cycle with temperatures of 60–220 °C for varying BH holding times from 1 to 10,000 min were applied for both materials. Mechanical properties such as yield and tensile strengths, elongation and BH values in dependency of the BH parameters have been determined and related to specific microstructural features in order to characterize the age and strain hardening behavior.  相似文献   

4.
This paper is concerned with tensile characteristics of auto grade low carbon, ultra low carbon and micro alloyed steel sheets under low to intermediate strain rates ranging from 0.0007 to 250 s−1. Experimental investigation reveals two important aspects of these steels under intermediate strain rate deformation. Firstly, the yield stress increases with strain rate in all these steels. Of course yield stress increment is higher for low carbon and ultra low carbon steel sheets. Secondly, the strain hardening rate drastically decreases with strain rate for low carbon and ultra low carbon steel sheets, whereas it remains steady for micro alloyed steel sheets. Based on these observations, a constitutive model has been proposed which predicts the strain rate sensitive flow behavior of all these grades within the strain rate range of automotive crash event.  相似文献   

5.
For the purpose of developing Nb–V–Ti microalloyed, hot rolled, high strength automotive steel for usage in heavy-duty truck wheel-discs and wheel-rims, appropriate cooling processes were designed, and microstructures and comprehensive mechanical properties (tension, bending, hole-expansion, and Charpy impact) of the tested steels at two cooling schedules were studied. The results indicate that the steel consists of 90% 5 μm polygonal ferrite and 10% pearlite when subjected to a cooling rate of 13 °C/s and a coiling temperature of 650 °C. The yield strength, tensile strength, and hole-expansion ratio are 570 MPa, 615 MPa, and 95%, respectively, which meet the requirements of the wheel-disc application. The steel consists of 20% 3 μm polygonal ferrite and 80% bainite (granular bainite and a small amount of acicular ferrite) when subjected to a cooling rate of 30 °C/s and a coiling temperature of 430 °C. The yield strength, tensile strength, and hole-expansion ratio are 600 MPa, 655 MPa, and 66%, respectively, which meet the requirements of the wheel-rim application. Both the ferrite–pearlite steel and ferrite–bainite steel possess excellent bendability and Charpy impact property. The precipitation behavior and dislocation pattern are characterized and discussed.  相似文献   

6.
As one of high grade advanced high strength steels (AHSSs), dual phase (DP) steel sheets and fully martensitic (MS) steel sheets have been successfully used in automotive crash-resistance components for its great benefit in reducing vehicle weight while improving car safety as well as their advantage in cost saving through cold forming instead of hot forming. The strain rate sensitivity of 600/800/1000 MPa DP and 1200 MPa MS were studied in this paper through a split Hopkinson tensile bar (SHTB) setup and compared with each other. The experiments showed that all dual phase (DP) AHSS ranging from 600 MPa to 1000 MPa are of positive strain rate sensitivity. While for the tested 1200 MPa MS, negative strain rate sensitivity has been found. Possible reason for the difference has been investigated through metallographical observation and their microstructures.  相似文献   

7.
The microstructural characteristics, tensile properties and low-cycle fatigue properties of a dual-phase steel (DP780) were investigated following its joining by three methods: laser welding, tungsten inert gas (TIG) welding, and metal active gas (MAG) welding. Through this, it was found that the size of the welded zone increases with greater heat input (MAG > TIG > laser), whereas the hardness of the weld metal (WM) and heat-affected zone (HAZ) increases with cooling rate (laser > TIG > MAG). Consequently, laser- and TIG-welded steels exhibit higher yield strength than the base metal due to a substantially harder WM. In contrast, the strength of MAG-welded steel is reduced by a broad and soft WM and HAZ. The fatigue life of laser-and TIG-welded steel was similar, with both being greater than that of MAG-welded steel; however, the fatigue resistance of all welds was inferior to that of the non-welded base metal. Finally, crack initiation sites were found to differ depending on the microstructural characteristics of the welded zone, as well as the tensile and cyclic loading.  相似文献   

8.
In recent years, the transformation-induced plasticity (TRIP) and twinning-induced plasticity (TWIP) steels have been the focus of great attention thanks to their excellent tensile strength-ductility combination. Accordingly the mechanical behavior of an advanced microalloyed TRIP–TWIP steel, the compression tests were conducted from 25 to 1000 °C. This experimental steel shows a high compressive strength of 1280 MPa with the yield strength of 385 MPa as well as an outstanding strain hardening rate of about 14,000 MPa at the 25 °C. In addition the results indicate that the plastic deformation in the range of 25–150 °C is controlled by both the strain-induced martensite formation and mechanical twinning. However the mechanical twinning has been speculated as the only deformation mechanism in the temperature range of 150–1000 °C. This as well has led to an outstanding grain refinement via grain partitioning. The occurrence of mechanical twinning at such high temperatures is a novel observation in this grade of TRIP–TWIP high manganese steels.  相似文献   

9.
The structure–mechanical property relationship, with particular focus on effect of tempering process on the microstructural evolution and mechanical properties was investigated in a low carbon Cu-bearing steel that was processed in three-steps, namely, intercritical annealing, intercritical tempering, and tempering heat treatment. The objective of adopting three steps was to elucidate the nature and evolution of microstructural constituents that contributed to high strength–ductility combination in the studied steel. The three-step processing led to a microstructure primarily comprising of ferrite, retained austenite, and small amount of bainite/martensite. The mechanical properties obtained were: yield strength > 720 MPa, tensile strength > 920 MPa, uniform elongation > 20%, total elongation > 30%, and low yield ratio of 0.78. The tempering step led to a significant increase in both yield and tensile strength and decrease in yield ratio, without reducing ductility, a behavior attributed to the precipitation of copper in retained austenite and ferrite. The precipitation of copper enhanced the stability of retained austenite and work hardening rate, leading to a high volume fraction of retained austenite (∼29%), with consequent increase in elongation and significant increase in yield and tensile strength during tempering.  相似文献   

10.
To reduce cost, optimise mechanical properties and improve process tolerance, a series of 1000 MPa grade ultrafine-grained dual phase (DP) steels with nanosized precipitates have been developed based on the C–Si–Mn–Ti alloy system. The grain size of ferrite in ultra-high strength DP steels ranges from 1.1 to 1.7 μm. The amount of precipitations in the annealed sheet is much more than that in the hot-rolled plates with the highest distribution frequency being between 5 and 10 nm. The grain refinement and precipitation strengthening interact significantly and have a considerable effect on yield strength. Therefore, the strengthening effects cannot be expressed as a simple linear relationship. A modified root-mean-square (RMS) relationship has been proposed to express the yield strength for dual phase steel with obvious grain refinement and precipitation strengthening.  相似文献   

11.
This paper examines the relationship between as-formed microstructure and mechanical properties of a hot stamped boron steel used in automotive structural applications. Boron steel sheet metal blanks were austenized and quenched at cooling rates of 30 °C/s, 15 °C/s and 10 °C/s within a Gleeble thermal–mechanical simulator. For each cooling rate condition, the blanks were simultaneously deformed at temperatures of 600 °C and 800 °C. A strain of approximately 0.20 was imposed in the middle of the blanks, from which miniature tensile specimens were extracted. Depending on the cooling rate and deformation temperature imposed on the specimens, some of the as-quenched microstructures consisted of predominantly martensite and bainite, while others consisted of martensite, bainite and ferrite. Optical and SEM metallographraphic techniques were used to quantify the area fractions of the phases present and quasi-static (0.003 s−1) uniaxial tests were conducted on the miniature tensile specimens. The results revealed that an area fraction of ferrite greater than 6% led to an increased uniform elongation and an increase in n-value without affecting the strength of the material for equivalent hardness levels. This finding resulted in improved energy absorption due to the presence of ferrite and showed that a material with a predominantly bainitic microstructure containing 16% ferrite (with 257 HV) resulted in a 28% increase in energy absorption when compared to a material condition that was fully bainitic with a hardness of 268 HV. Elevated strain rate tension tests were also conducted at 10 s−1 and 80 s−1 and the effect of strain rate on the ultimate tensile strength (σUTS) and yield strength (σY) was shown to be moderate for all of the conditions. The true stress versus effective plastic strain (flow stress) curves generated from the tensile tests were used to develop the “Tailored Crash Model II” (TCM II) which is a strain rate sensitive constitutive model that is a function of effective plastic strain, true strain rate and area fraction of martensite, bainite and ferrite. The model was shown to accurately capture the hardening behaviour and strain rate sensitivity of the multiphase material conditions examined.  相似文献   

12.
Three experimental fully austenitic high-carbon twinning-induced plasticity (TWIP) steel grades were produced and the stacking fault energy (SFE) was investigated based on the thermodynamic modeling approach. The SFE of Fe–20Mn–xCu–1.3C (x = 0, 1.5 and 3.0) steels varied from 24.36 to 28.74 mJ m−2 at room temperature. In order to study the correlation between the SFE and the mechanical behavior of TWIP steels, tensile tests were performed at room temperature and the deformed microstructures were examined at different strain levels by transmission electron microscopy. The Cu additions resulted in a remarkable increase in total elongation without a slight loss of tensile strength. In addition, the critical strain for serration start on the tensile stress–strain curves (i.e. required strain to generate mechanical twinning) was found to increase with increasing Cu content. Transmission electron microscope (TEM) observations also indicated that the occurrence of mechanical twinning was suppressed by increasing the Cu addition. The strain hardening mechanism and the superior ductility in deformation are dominated by the interaction of twins and dislocations. The mechanical behavior of TWIP steels is related to the Cu addition, the SFE, the interaction of twins and dislocations.  相似文献   

13.
High strength low alloy (HSLA) and dual-phase DP980 (UTS  980 MPa) steels were joined using fiber laser welding in similar and dissimilar materials combinations. The welded joints were characterized with respect to microhardness and tensile properties at three different temperatures: −40 °C, 25 °C, and 180 °C. Tensile properties of the welded joints were compared to those of the base metal (BM) obtained under similar conditions. A good correlation was found between the welded joints and the BM in relation to the tensile properties obtained at the different temperatures. A general trend of increase in the yield strength (YS), the ultimate tensile strength (UTS) and energy absorption (EA) with decreasing temperature was observed; however, work hardening coefficient was not altered and insignificant scatter was observed in case of the elongation. However, in the DP980 steel, dynamic strain ageing was observed only in the BM.  相似文献   

14.
《Materials Letters》2007,61(14-15):2919-2922
A novel route of strengthening mild interstitial free steels has been suggested in the current investigation based on copper precipitation hardening. A possible scheme of application of this new high strength automotive steel has also been outlined. It has been shown that with the addition of 1.18 wt.% copper, a yield strength of ∼ 456 MPa and tensile strength of ∼ 566 MPa can be achieved through a post annealing ageing treatment. The present copper-containing interstitial free steel is far stronger than the existing high strength interstitial free steels.  相似文献   

15.
The use of aluminium as a deliberate alloying addition in steels has attracted increased attention recently as a possible replacement for Si in transformation-induced plasticity (TRIP) steels. In addition, some authors have suggested that it offers beneficial effects as a solid solution strengthener as well as galvanizability. In this work three low carbon (0.02 wt.%) manganese (1.4 wt.%) steels have been alloyed with very different aluminium contents (0.02, 0.48 and 0.94 wt.%) in order to study the effect of this alloying element on the final ferritic microstructure. Two different rolling schedules have been applied to these steels and the final microstructures have been characterized extensively by EBSD measurements. The results indicate that aluminium additions have a profound influence on ferrite grain size and the grain boundary misorientation distribution functions.  相似文献   

16.
This paper has been concerned to investigate in details the mechanical properties of AISI4140 heat treatable steel under ferrite–martensite dual-phase (DP) microstructures in conjunction with that of conventional quench-tempered (CQT) full martensitic condition. For this purpose, a wide variety of ferrite–martensite DP samples containing different volume fractions of ferrite and martensite microphases have been developed using step quenching heat treatment processes at 600 °C for 20–55 s holding times with the subsequent hot oil quenching after being austenitized at 860 °C for 60 min in the same situation as to the CQT condition. The finalized tempering heat treatment has been carried out at 600 °C for 30 min for both of direct quenched full martensitic and DP samples in order to optimize the strength–ductility combination. Light and electron microscopes have been used in conjunction with mechanical tests to assess the structure–property relationships in the DP and CQT heat treated samples. The experimental results indicate that the DP microstructures consisting about 7% volume fraction of fine grain boundary ferrite in the vicinity of martensite are associated with excellent mechanical properties in comparison to that of CQT condition. These observations are rationalized in terms of higher carbon concentration of the remaining metastable austenite leading to the harder martensite formation on the subsequent hot oil quenching, and so developing much harder ferrite grains as a consequence of more constraints induced in the ferrite grains during martensitic phase transformation in the remaining austenite adjacent to the ferrite area. The higher martensite volume fraction in the vicinity of thin continuous grain boundary ferrite network has been associated with the harder ferrite formation, causing higher work hardening behavior in the short time treated DP samples. Moreover, it has been found that in order to optimize the mechanical properties of ferrite–martensite DP samples, two independently parameters should be simultaneously controlled: one is the ferrite volume fraction and the other is ferrite morphology.  相似文献   

17.
The effect of residual stresses on the reverse bending fatigue strength of steel sheets with punched holes was studied for steels with tensile strength grades of 540 MPa and 780 MPa. Tensile and compressive residual stresses were induced around the punched holes. Heat treatment of the specimens with punched holes at 873 K for 1 h decreased the residual stresses around the holes and improved the fatigue strength of the sheets. This result means that the tensile residual stresses induced in the sidewalls of the holes and near the hole edges by punching reduced fatigue strength. The effect of the residual stresses on the fatigue limits of the edges was estimated by the modified Goodman relation using the residual stresses after cyclic loading and the ultimate tensile strength at the fatigue crack initiation sites.  相似文献   

18.
Tungsten Inert Gas (TIG) welding is considered as one of the cleanest welding methods. It is generally adopted for thinner materials with moderate weld joint strengths. Welding of sintered porous materials continues to be a challenge due to the inherent porosity of the parent metals. The present research work attempts to address some of the issues relating to the welding behaviour of sintered and forged Fe–0.3%C–3%Mo low alloy steels under TIG welding. Rectangular strips of size 70 mm × 15 mm × 5 mm, obtained by blending, compacting and sintering of elemental powders of iron, graphite and molybdenum, were upset forged – both hot and cold in order to obtain alloy steel strips of various porosities. Two identical alloy steel strips of equal density were then welded both along longitudinal and transverse directions, by TIG welding, employing filler metal of suitable composition. The welded strips were then subjected to tensile test, hardness test, microstructural and Scanning Electron Microscope (SEM) fractography studies. Cold/hot upsetting of the sintered alloy preforms has led to enhanced density. As a result of improved density, their tensile strength and hardness values were also found to be enhanced. The welded alloy exhibited higher tensile strength compared to the un-welded base metal, due to strengthening by residual stress. Similarly, the strength and hardness of the welded alloy strips were found to be enhanced with increase in density. The tensile strength of welded joint is found to be higher compared to that of the base metal due to alloy metals segregation, rapid cooling and formation of acicular ferrite at the weldment of welded joint. No porosity was observed in the weld metal or Heat Affected Zone (HAZ) of the weld joint. However, the base metal had numerous micro pores, though pore migration towards weldment has not been observed.  相似文献   

19.
The purpose of this study was to evaluate microstructural and mechanical change of DP780 steel after tungsten inert gas (TIG) welding and the influence of notch locations on the fatigue crack growth (FCG) behavior. The tempering of martensite in the sub-critical heat affected zone (HAZ) resulted in a lower hardness (~ 220 HV) compared to the base material (~ 270 HV), failure was found to originate in the soft HAZ during tensile test. The fusion zone (FZ) consisted of martensite and some acicular ferrite. The joint showed a superior tensile strength with a joint efficiency of 94.6%. The crack growth path of HAZ gradually deviated towards BM due to the asymmetrical plastic zone at the crack tip. The FCG rate of the crack transverse to the weld was fluctuant. The Paris model can describe the FCG rate of homogeneous material rather well, but it cannot precisely represent the FCG rate of heterogeneous material. The fatigue fracture surface showed that the stable expanding region was mainly characterized by typical fatigue striations in conjunction with secondary cracks; the rapid expanding region contained quasi-cleavage morphology and dimples. However, ductile fracture mechanism predominated with an increasing stress intensity factor range (ΔK). The final unstable failure fractograph was subtotal dimples.  相似文献   

20.
Heat-treatment processes to obtain carbide-free upper bainite, low bainite and low-temperature bainite in the 34MnSiCrAlNiMo medium-carbon steel were explored. Results show that in the steel bainite transformation mainly goes through three stages: short incubation, explosive nucleation and slow growth. When transformation temperature, T > Ms + 75 °C, upper bainite consisted of catenary bainitic ferrite and blocky retained austenite is obtained in the steel. When Ms + 10 °C < T < Ms + 75 °C, lower bainite is the main morphology composed of lath-like bainitic ferrite and flake-like retained austenite. When T < Ms + 10 °C, the lower bainite, also known as low-temperature bainite, is obtained, which contains much thinner lath-like bainitic ferrite and film-like retained austenite. Mechanical testing results show that the lower the transformation temperature is, the better comprehensive performance is. The low-temperature bainite has the very high tensile strength and impact toughness simultaneously. The lower bainite has lower tensile strength and higher impact toughness. The upper bainite has higher tensile strength and lower impact toughness. The big difference of the mechanical performance between these kinds of bainite is mainly caused by interface morphology, size, and phase interface structure of the bainitic ferrite and the retained austenite. Additionally, when the bainite transformation temperature is decreased, the high-angle misorientation fraction in packets of bainite ferrite plates is increased. High-angle misorientation between phase interfaces can prevent crack propagation, and thus improves impact toughness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号