首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present work aimed at the standardization of transesterification process parameters for the production of methyl ester of filtered neem oil and fuel characterization for engine performance. The effect of process parameters such as molar ratio, preheating temperature, catalyst concentration and reaction time was studied to standardize the transesterification process for estimating the highest recovery of ester with lowest possible viscosity. Based on the observations of the ester recovery and kinematic viscosity, it was found that filtered neem oil at 6:1 M ratio (methanol to oil) preheated at 55 °C temperature and maintaining 60 °C reaction temperature for 60 min in the presence of 2 percent KOH and then allowed to settle for 24 h in order to get lowest kinematic viscosity (2.7 cSt) with ester recovery (83.36%). Different fuel properties of the neem methyl ester and neem oil were also measured. Results show that the methyl ester of neem obtained under the optimum condition is an excellent substitute for fossil fuels.  相似文献   

2.
In the present study, surfaces of cylinder head, piston, exhaust and inlet valve of a four-stroke, direct injection, single cylinder diesel engine were coated with molybdenum (Mo) by plasma spray method. Thus, thermal barrier characteristic was brought to these parts. Variances in performance and emission values of cotton methyl ester and 2D fuel mixtures were studied in the ceramic coated and uncoated engines under the same running conditions. Performance (6.0% for specific fuel consumption) and emission values (up to 18.0% for CO, 8.0% for smoke density) of the test fuel were improved in the coated engine compared with the uncoated engine. NOx increase (4.5%) with the increased temperatures expected in the coated engine.  相似文献   

3.
An experimental investigation was carried out on a small direct injection (DI) diesel engine, fuelling the engine with 10% (B10), 20% (B20), 30% (B30) and 40% (B40) blending of Koroch seed oil methyl ester (KSOME) with diesel. The performance and combustion characteristics of the engine at various loads are compared and analyzed. The results showed higher brake specific fuel consumption (BSFC) and lower brake thermal efficiency (BTE) for the KSOME blends. The engine indicated power (IP) was more for the blends up to B30, but found to be reduced for the blend B40 when compared to that of diesel. The engine combustion parameters such as pressure crank angle diagram, peak pressure, time of occurrence of peak pressure, net heat-release rate, cumulative heat release, ignition delay and combustion duration were computed. The KSOME blends exhibited similar combustion trend with diesel. However, the blends showed an early start of combustion with shorter ignition delay period. The study reveals the suitability of KSOME blends up to B30 as fuel for a diesel engine mainly used in generating sets and the agricultural applications in India without any significant drop in engine performance.  相似文献   

4.
The present study tries to explore the potential of three different types of biodiesel viz. Rice bran oil methyl ester (RBME), Pongamia oil methyl ester (PME) and Palm oil methyl ester (POME) as pilot fuels for a biogas run dual fuel diesel engine designed for power generation. The results indicated that under dual fuel mode, RBME-biogas produced a maximum brake thermal efficiency of 19.97% in comparison to 18.4% and 17.4% respectively for PME-biogas and POME-biogas at 100% load. The emission study divulged that under dual fuel mode, on an average, there was an increase of CO emission by 25.74% and 32.58% for PME-biogas and POME-biogas, respectively in comparison to RBME-biogas. Furthermore, on an average, the HC emissions for PME-biogas and POME-biogas increased by 11.73% and 16.27%, respectively in comparison to RBME-biogas. On the other hand, on an average, there was a decrease in NOX emission by 5.8% and 14%, respectively for PME-biogas and POME-biogas respectively in comparison to RBME-biogas.  相似文献   

5.
The experiments were undertaken to obtain the knowledge necessary for raising the thermal efficiency of mixed oil composed of cottonseed oil and conventional diesel oil and for improving the performance of engine fuelled by the mixture. The experimental results obtained showed that a mixing ratio of 30% cottonseed oil and 70% diesel oil was practically optimal in ensuring relatively high thermal efficiency of engine, as well as homogeneity and stability of the oil mixture. A quadratic regressive orthogonal design test method was adopted in the experiment designed to examine the relationship between specific fuel consumption and four adjustable working parameters (intake-valve-closing angle (α), exhaust-valve-opening angle (β), fuel-delivery angle (θ) and injection pressure (P, in 104 Pa)) when the above-mentioned oil mixture was used. The mathematical equations characterizing the relationship were formulated. The equation of specific fuel consumption derived from the regressive test under each operating condition was set as the objective function and the ranges for the four adjustable working parameters were the given constraint condition. Models of non-linear programming were then constructed. Computer-aided optimization of the working parameters for 30:70 cottonseed oil/diesel oil mixed fuel was achieved. It was concluded that the predominant factor affecting the specific fuel consumption was fuel-delivery angle θ, the approximate optimal value of which, in this specific case, was 3–5° in advance of that for engine fuelled by pure diesel oil. The experimental results also provided useful reference material for selection of the most preferable combination of working parameters.  相似文献   

6.
《Biomass & bioenergy》2006,30(1):76-81
The Jojoba oil-wax is extracted from the seeds of the Jojoba (Simmondsia chinensis Link Schneider), a perennial shrub that grows in semi desert areas in some parts of the world. The main uses of Jojoba oil-wax are in the cosmetics and pharmaceutical industry, but new uses could arise related to the search of new energetic crops.This paper summarizes a process to convert the Jojoba oil-wax to biodiesel by transesterification with methanol, catalysed with sodium methoxide (1 wt% of the oil). The transesterification reaction has been carried out in an autoclave at 60 °C, with a molar ratio methanol/oil 7.5:1, and vigorous stirring (600 rpm), reaching a quantitative conversion of the oil after 4 h. The separation of the fatty acid methyl esters (the fraction rich in FAME, 79% FAME mixture; 21% fatty alcohols; 51% of methyl cis-11-eicosenoate) from the fatty alcohols rich fraction (72% fatty alcohols; 28% FAME mixture; 26% of cis-11-eicosen-1-ol, 36% of cis-13-docosen-1-ol) has been accomplished in a single crystallization step at low temperature (−18 °C) from low boiling point petroleum ether.The fraction rich in FAME has a density (at 15 °C), a kinematic viscosity (at 40 °C), a cold filter plugging point and a high calorific value in the range of the European standard for biodiesel (EN 14214).  相似文献   

7.
Honne oil methyl ester (HOME) is produced from a nonedible vegetable oil, namely, honne oil, available abundantly in India. It has remained as an untapped new possible source of alternative fuel that can be used for diesel engines. The present research is aimed at investigating experimentally the performance, exhaust emission, and combustion characteristics of a direct injection diesel engine (single cylinder, water cooled) typically used in agricultural sector over the entire load range when fuelled with HOME and diesel fuel blends, HM20 (20% HOME + 80% diesel fuel)–HM100. The properties of these blends are found to be comparable with diesel fuel conforming to the American and European standards. The combustion parameters of HM20 are found to be slightly better than neat diesel (ND). For other blend ratios, these combustion parameters deviated compared with ND. The performance (brake thermal efficiency (BTE), brake‐specific fuel consumption, and exhaust gas temperature) of HM20 is better than ND. For other blend ratios, BTE is inferior compared with ND. The emissions (CO and SO) of HM20–HM100, throughout the entire load range, are dropped significantly compared with ND. Unburned hydrocarbon emissions of HM20–HM40, throughout the entire load range, is slightly decreased, whereas for other blend ratios, it is increased compared with ND. NOx emissions of HM20, throughout the entire load range, is slightly increased, whereas for other blend ratios, it is slightly decreased. The reductions in exhaust emissions together with increase in BTE made the blend HM20 a suitable alternative fuel for diesel fuel and thus could help in controlling air pollution. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Biodiesel is an alternative fuel that is cleaner than petrodiesel. Biodiesel can be used directly as fuel for a diesel engine without having to modify the engine system. It has the major advantages of having high biodegradability, excellent lubricity and no sulfur content. This paper presents the results of investigations carried out in studying the fuel properties of soybean methyl ester (SME) and its blend with marine diesel fuel from 5%, 20% and 50% blends by volume and in running a diesel engine with these fuels. The results indicate that the use of biodiesel produces lower smoke opacity (up to 74%), but higher brake specific fuel consumption (BSFC) (up to 12%) compared to marine fuel (MF). The measured carbon monoxide (CO) emissions of B5 and B100 fuels were found to be 3% and 52% lower than that of the MF, respectively.  相似文献   

9.
In this study, performance and emissions of cottonseed oil methyl ester in a diesel engine was experimentally investigated. For the study, cottonseed oil methyl ester (CSOME) was added to diesel fuel, numbered D2, by volume of 5%(B5), 20%(B20), 50%(B50) and 75%(B75) as well as pure CSOME (B100). Fuels were tested in a single cylinder, direct injection, air cooled diesel engine. The effects of CSOME-diesel blends on engine performance and exhaust emissions were examined at various engine speeds and full loaded engine. The effect of B5, B20, B50, B75, B100 and D2 on the engine power, engine torque, bsfc's and exhaust gasses temperature were clarified by the performance tests. The influences of blends on CO, NOx, SO2 and smoke opacity were investigated by emission tests. The experimental results showed that the use of the lower blends (B5) slightly increases the engine torque at medium and higher speeds in compression ignition engines. However, there were no significant differences in performance values of B5, B20 and diesel fuel. Also with the increase of the biodiesel in blends, the exhaust emissions were reduced. The experimental results showed that the lower contents of CSOME in the blends can partially be substituted for the diesel fuel without any modifications in diesel engines.  相似文献   

10.
In order to meet the energy requirements, there has been growing interest in alternative fuels like biodiesels, methyl alcohol, ethyl alcohol, biogas, hydrogen and producer gas to provide a suitable diesel oil substitute for internal combustion engines. Vegetable oils present a very promising alternative to diesel oil since they are renewable and have similar properties. Vegetable oils offer almost the same power output with slightly lower thermal efficiency when used in diesel engine [Srivastava A, Prasad R. Triglycerides-based diesel fuels. Renew Sustain Energy Rev 2000;4:111–33. [1]; Vellguth G. Performance of vegetable oils and their monoesters as fuels for diesel engines. SAE 831358, 1983. [2]; Demirbas A. Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods. Int J Prog Energy Combust Sci 2005;31:466–87. [3]; Jajoo BN, Keoti RS. Evaluation of vegetable oils as supplementary fuels for diesel engines. In: Proceedings of the XV national conference on IC engines and combustion, Anna University Chennai, 1997. [4]; Altin R, Cetinkaya S, Yucesu HS. The potential of using vegetable oil fuels as fuel for diesel engines. Int J Energy Convers Manage 2000;42:529–38, 248. [5]; Gajendra Babu MK, Chandan Kumar Das LM. Experimental investigations on a Karanja oil methyl ester fuelled DI diesel engine. SAE 2006-01-0238, 2006. [6]; Agarwal D, Kumar Agarwal A. Performance and emission characteristics of a Jatropha oil (preheated and blends) in a direct injection compression ignition engine. Int J Appl Therm Eng 2007;27:2314–23. [7]]. Research in this direction with edible oils have yielded encouraging results, but their use as fuel for diesel engine has limited applications due to higher domestic requirement [Scholl Kyle W, Sorenson Spencer C. Combustion Analysis of soyabean oil methyl ester in a direct injection diesel engine. SAE 930934, 1993. [8]; Nwafor OMI. Effect of advanced injection timing on the performance of rapeseed oil in diesel engines. Int J Renew Energy 2000;21:433–44. [9]; Nwafor OMI. The effect of elevated fuel inlet temperature on performance of diesel engine running on neat vegetable oil at constant speed conditions. Renew Energy 2003;28:171–81. [10]]. In view of this, Honge oil (Pongamia Pinnata Linn) being non-edible oil could be regarded as an alternative fuel for CI engine applications. The viscosity of Honge oil is reduced by transesterification process to obtain Honge oil methyl ester (HOME).Gasification is a process in which solid biomass is converted into a mixture of combustible gases, which complete their combustion in an IC engine. Hence, producer gas can act as a promising alternative fuel, especially for diesel engines by substituting considerable amount of diesel fuels. Downdraft moving bed gasifiers coupled with IC engine are a good choice for moderate quantities of available biomass, up to 500 kW of electric power. Hence, bioderived gas and vegetable liquids appear more attractive in view of their friendly environmental nature. Since vegetable oils produce higher smoke emissions, dual fuel operation could be adopted for improving their performance.  相似文献   

11.
The objective of the present work is to analyze the combustion characteristics of crude rice bran oil methyl ester (CRBME) blend (20% of CRBME with 80% no.2 diesel on volume basis) as a fuel in a stationary small duty direct injection (DI) compression ignition (CI) engine. When operating with CRBME blend the cylinder pressure was comparable to that of diesel. It was observed that the delay period and the maximum rate of pressure rise for CRBME blend were lower than those of diesel. The occurrence of maximum heat release rate advanced for CRBME blend with lesser magnitude when compared to diesel. CRBME blend requires more crank angle duration to release 50% & 90% of heat when compared with diesel. The brake specific fuel consumption of CRBME blend was found to be only marginally different from that of the diesel and its hourly fuel cost was higher than that of diesel. CRBME blend has lower smoke intensity and higher NOx emission than those of diesel. Since the measured parameters for CRBME blend differs only by a smaller magnitude, when compared with diesel, this investigation ensures the suitability of CRBME blend as fuel for CI engines with higher fuel cost.  相似文献   

12.
Biofuels are being investigated as potential substitutes for current high pollutant fuels obtained from the conventional sources. In the past, fuels were generally selected on the basis of lowest cost relating to the requirements of the engine, and no attention was given to the possible effects of their use on the environment. Recent concerns over the environment, increasing liquid fuel prices and scarcity of supply in the last decade have promoted interest in the development of alternative sources of liquid energy. The purpose of this research was to evaluate the potential of rapeseed methyl ester (RME) as a liquid fuel for diesel engines in relation to meeting emission requirements. The test results showed that RME and its blends with diesel fuel emitted high CO2 compared to test results on diesel fuel. A very significant reduction in emissions of hydrocarbon (HC) were recorded when running on RME and the blends. HC emissions were noted to increase with increased amount of diesel fuel in the blend. The fuel economy was a little worse when running on RME due to its low energy content. There were no marked difference noted for the exhaust temperatures of the blends, RME and diesel fuel at high speed operation. However, the diesel fuel operation produced high exhaust temperatures at low engine speed. Lubricating oil analysis showed reduction in viscosity indicating oil dilution.  相似文献   

13.
Hanbey Hazar   《Applied Energy》2010,87(1):134-140
An important alternative for diesel fuel is methyl ester made of vegetable oils. Direct use these fuels without modification in diesel engines causes some damages on the parts of the engines and also, the viscosity of the methyl ester fuels is quite higher than that of diesel fuel (No. 2D) and their calorific value is lower. Therefore it is not possible to obtain more benefit. Coating combustion chamber parts with a ceramic material seems an effective solution for improving performance of these lower-quality fuels compared with No. 2D and also exhaust emission values. Since it allows to use higher combustion temperatures. In the present study, surfaces of cylinder head, piston, exhaust and inlet valve of a four-stroke, direct injection, single cylinder diesel engine were coated with molybdenum (Mo) by plasma spray method. Thus, thermal barrier characteristic was brought to these parts. Variances in performance and emission values of cotton methyl ester and 2D fuel mixtures were studied in the ceramic coated and uncoated engines under the same running conditions. Performance (up to 2.2–2.3% for engine power, up to 3.5–5.6% for specific fuel consumption) and emission values (up to 17–22% for CO, up to 5.2–10% for smoke) of the test fuels were improved in the coated engine compared with the uncoated engine. However, because the coated engine ran at higher temperatures compared with the uncoated engine, an increase (up to 6.5–7.4%) was seen in NOx emission in cases of all test fuels.  相似文献   

14.
An experimental investigation has been carried out to examine for the first time the performance and combustion noise of an indirect injection diesel engine running with new fuel derived from pure jojoba oil, jojoba methyl ester, and its blends with gas oil. A Ricardo E6 compression swirl diesel engine was fully instrumented for the measurement of combustion pressure and its rise rate and other operating parameters. Test parameters included the percentage of jojoba methyl ester in the blend, engine speed, load, injection timing and engine compression ratio. Results showed that the new fuel derived from jojoba is generally comparable and good replacement to gas oil in diesel engine at most engine operating conditions, in terms of performance parameters and combustion noise produced.  相似文献   

15.
In this investigation, castor methyl ester (CME) was prepared by transesterification using potassium hydroxide (KOH) as catalyst and was used in four stroke, single cylinder variable compression ratio type diesel engine. Tests were carried out at a rated speed of 1500 rpm at different loads. Straight vegetable oils pose operational and durability problems when subjected to long term usages in diesel engines. These problems are attributed to high viscosity, low volatility and polyunsaturated character of vegetable oils. The process of transesterification is found to be an effective method of reducing vegetable oil viscosity and eliminating operational and durability problems. The important properties of methyl ester of castor seed oil are compared with diesel fuel. The engine performance was analysed with different blends of biodiesel and was compared with mineral diesel. It was concluded that the lower blends of biodiesel increased the break thermal efficiency and reduced the fuel consumption. The exhaust gas temperature increased with increasing biodiesel concentration. The results proved that the use of biodiesel (produced from castor seed oil) in compression ignition engine is a viable alternative to diesel.  相似文献   

16.
《Biomass & bioenergy》2005,28(1):77-86
Vegetable oils and their methyl/ethyl esters are alternative renewable fuels for compression ignition engines. Different kinds of vegetable oils and their methyl/ethyl esters have been tested in diesel engines. However, tobacco seed oil and tobacco seed oil methyl ester have not been tested in diesel engines, yet. Tobacco seed oil is a non-edible vegetable oil and a by-product of tobacco leaves production. To the author's best knowledge, this is the first study on tobacco seed oil methyl ester as a fuel in diesel engines.In this study, potential tobacco seed production throughout the world, the oil extraction process from tobacco seed and the transesterification process for biodiesel production were examined. The produced tobacco seed oil methyl ester was characterized by exposing its major properties. The effects of tobacco seed oil methyl ester addition to diesel No. 2 on the performance and emissions of a four cycle, four cylinder turbocharged indirect injection (IDI) diesel engine were examined at both full and partial loads. Experimental results showed that tobacco seed oil methyl ester can be partially substituted for the diesel fuel at most operating conditions in terms of performance parameters and emissions without any engine modification and preheating of the blends.  相似文献   

17.
An experimental study has been carried to use raw Algae oil and its methyl esters in an indirect injection diesel engine. Effects of engine speed, engine load output, injection timing of the algae biofuel and engine compression ratio on the engine output torque, combustion noise (maximum pressure rise rate), maximum pressure and maximum heat release rate have been studied. Raw oil extracted from microalgae and two versions of its methyl ester (0.1 and 0.2 methyl ester versions) have been evaluated in a Ricardo E6 engine. It has been shown that the algae oil methyl ester’s properties are similar to diesel fuel and its use has been successful in running the diesel engine smoothly. However, its use reduced the engine output torque slightly and increased the combustion noise. The engine output can be increased and the combustion noise can be reduced by controlling the engine design parameters e.g. injection timing and compression ratio.  相似文献   

18.
This paper presents experimental results regarding the impact of adding different tertiary amides of fatty acids to mineral diesel fuel; an assessment of the behaviour of these compounds as possible diesel fuel extenders is also included. Measurements of cetane number, cold flow properties (cloud point, pour point and CFPP), density, kinematic viscosity, flash point and distillation temperatures are reported, while initial experiments concerning the effects on particulate emissions are also described. Most of the examined tertiary fatty amides esters have very good performance and they can be easily prepared from fatty acids (biomass). Such compounds or their blends could be used as mineral diesel fuel or even fatty acid methylesters (FAME, biodiesel) substitutes or extenders. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

19.
In this study, usability of cotton oil soapstock biodiesel–diesel fuel blends as an alternative fuel for diesel engines were studied. Biodiesel was produced by reacting cotton oil soapstock with methyl alcohol at determined optimum condition. The cotton oil biodiesel–diesel fuel blends were tested in a single cylinder direct injection diesel engine. Engine performances and smoke value were measured at full load condition. Torque and power output of the engine with cotton oil soapstock biodiesel–diesel fuel blends decreased by 5.8% and 6.2%, respectively. Specific fuel consumption of engine with cotton oil soapstock–diesel fuel blends increased up to 10.5%. At maximum torque speeds, smoke level of engine with blend fuels decreased up to 46.6%, depending on the amount of biodiesel. These results were compared with diesel fuel values.  相似文献   

20.
As the real cost of fuel rises the efficiency of energy conversion devices will become of increasing importance. Efficiency is a variable factor depending inter alia on load factor. Whereas heat engines commonly yield optimum efficiencies at near to maximum power, fuel cells yield optimum efficiencies at zero power. Projections based on realistic developments suggest that fuel cells will operate overall with higher efficiencies than heat engines when load factors are below ~45%. Road transportation generally operates at load factors much lower than this and represents a suitable market for fuel cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号