首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The evolution of structure and thermal conductivity (k) has been studied for a range of Y–La2Zr2O7 solid solutions. Within the pyrochlore range (x < 0.40) Y3+ solely substitutes for La3+ below a critical composition factor (x = 0.15), above which it substitutes for both La3+ and the Zr4+. A glass-like k, approaching the amorphous limit, is observed within a certain composition range (0.20 ? x < 0.40). The glass-like k behaviour is attributed to a phonon localization effect that arises from small and weakly bound Y3+ cations (rattlers) oscillating locally and independently in oversized anionic cages [(La/Y)O8]. The ultralow and glassy k makes Y3+-doped La2Zr2O7 pyrochlores promising candidate materials for high temperature thermal barrier coating topcoats.  相似文献   

3.
4.
The deformation microstructures of Al and Al–Mn {1 1 0}〈1 1 2〉 single crystals have been characterized after room temperature channel-die compression up to true strains of 2.1. The evolution of local misorientations and microband structures were quantified by high-resolution electron backscatter diffraction in a field emission gun scanning electron microscope and their alignments compared with the traces of active slip planes and macroscopic shear stress planes. During plane-strain compression these “Brass” oriented crystals remain stable in terms of the final, average, orientation, with a small orientation spread. However, the microband alignment varies with strain and also with solute content. There is a general tendency for the microbands to be both crystallographic and non-crystallographic at low strains, then crystallographic, and finally mixed again at high strains (with some lamellar banding).  相似文献   

5.
《Acta Materialia》2004,52(7):1959-1970
We propose an atomistic model to describe the copper/sapphire interface by means of simple interatomic potentials involving only a few fitting parameters. Successful results are achieved when the copper atoms in the monatomic layer closest to the interface have properties different from the bulk. This layer is to accommodate the ionic/covalent bonding in the ceramics to the metallic bonding in copper. For an oxygen terminated interface, we fit the parameters of the potentials to the results of a rigid tensile test (explained in the text) simulated from first principles. The results of atomic relaxation near the interface are shown to be consistent with ab initio and experimental results available in the literature. Calculations reveal highly interesting relaxation dynamics near the interface. In the early stage of relaxation, a periodic network of partial misfit dislocations is formed, which later transforms into an irregular network due to the instability of the layer of copper atoms atop the oxygen atoms. This explains the interface incoherency observed in high-resolution electron microscopy. Calculations based on the FK model reproduce this effect.  相似文献   

6.
7.
Low-temperature precipitation reactions in 100Cr6 are characterized using transmission electron microscopy and X-ray diffraction, and modelled using thermokinetic methods. Martensitically transformed 100Cr6 is shown to display a complex microstructure composed of plate martensite, primary carbides, retained austenite and one or more of the ?-, η- and θ-phases. It is demonstrated that the maximum tensile strength (in excess of 2 GPa) and ductility is achieved by the θ-phase and the maximum yield strength is found during the α′ + η  α′ + θ transition. The interplay between the amount of carbon in solid solution, the martensite tetragonality and its morphology are related to the precipitate/matrix strain energy, the precipitate species present and their morphology. The progress in precipitate volume fraction, average radius, particle number and matrix composition can be quantitatively described by performing multicomponent precipitation kinetics calculations in paraequilibrium incorporating: (i) the effects of precipitate/matrix lattice misfit strain and particle aspect ratio, (ii) nucleation at plate boundaries and dislocations and (iii) an appropriate value for the precipitate/matrix interfacial energy, which is the only parameter fitted in the calculation.  相似文献   

8.
9.
10.
In the present work, high-frequency induction heating is used to fabricate TiB2SiC ceramics and the relative density was more than 97%, and then the thermophysical properties of TiB2SiC ceramics were investigated in detail. The specific heat showed the weak dependence on the test temperature due to the presence of the interface gap because the relative density was not 100%. As the sintering temperature increased, the thermal diffusivity of TiB2SiC ceramics increased, which was due to the increase of relative density and grain growth. The thermal conductivity of TiB2SiC ceramics showed a marked increase with increasing grain size and relative density. This could be attributed to a reduction in the number of grain boundaries that interrupt the heat flow path, resulting in an increase in the mean free path of the phonons. Larger grains led to an increase of mean free path of the phonons and thus contributed to a further increase in thermal conductivity.  相似文献   

11.
The temperature dependence of polarization for Pb(Zn1/3Nb2/3)1?xTixO3 single crystals poled in the [0 0 1]-direction has been investigated. During the application of a temperature increase, the percentage of switched domains and the distortion of the crystalline lattice in (1 ? x)PZN–xPT single crystals were evaluated by X-ray diffraction (XRD) patterns. Using this method, intrinsic and extrinsic contributions to polarization variations were separated in the temperature range from 25 °C to the Curie temperature (Tc). Experimental polarization variations were simulated from microscopic data and details on micro–macro relationships were given. It was found that polarization variation with temperature is caused by the variation of the distortion of the crystalline lattice for temperatures below the Curie temperature and that only 90° domain switching occurs in the vicinity of the Curie temperature. Moreover, the hysteretic behavior of the polarization with temperature is due to motion of domain walls. The understanding of mechanisms of depolarization with temperature and the hysteresis associated with are of interest for the enhancement the pyroelectric properties of the material for detection and energy harvesting applications.  相似文献   

12.
Understanding the stability of the three-phase Mo_ss + Mo3Si + Mo5SiB2 region is important for alloy design of Mo–Si–B-based refractory metal intermetallic composites. In this work, thermodynamic modeling is coupled with guided experiments to study phase stability in this three-phase region of the Mo–Si–B–X (X = Ti, Zr, Hf) system. Both the calculated and experimental results show that additions of Zr and Hf limit significantly the stability of the three-phase region because of the formation of the ternary phases MoSiZr and MoSiHf, while Ti addition leads to a much larger region of stability for the three-phase equilibrium.  相似文献   

13.
R. Gröger  V. Vitek 《Acta Materialia》2013,61(17):6362-6371
The recently formulated constrained nudged elastic band method with atomic relaxations (NEB + r) (Gröger R, Vitek V. Model Simul Mater Sci Eng 2012;20:035019) is used to investigate the dependence of the Peierls barrier of 1/2〈1 1 1〉 screw dislocations in body-centered cubic metals on non-glide stresses. These are the shear stresses parallel to the slip direction acting in the planes of the 〈1 1 1〉 zone different from the slip plane, and the shear stresses perpendicular to the slip direction. Both these shear stresses modify the structure of the dislocation core and thus alter both the Peierls barrier and the related Peierls stress. Understanding of this effect of loading is crucial for the development of mesoscopic models of thermally activated dislocation motion via formation and propagation of pairs of kinks. The Peierls stresses and related choices of the glide planes determined from the Peierls barriers agree with the results of molecular statics calculations (Gröger R, Bailey AG, Vitek V. Acta Mater 2008;56:5401), which demonstrates that the NEB + r method is a reliable tool for determining the variation in the Peierls barrier with the applied stress. However, such calculations are very time consuming, and it is shown here that an approximate approach of determining the stress dependence of the Peierls barrier (proposed in Gröger R, Vitek V. Acta Mater 2008;56:5426) can be used, combined with test calculations employing the NEB + r method.  相似文献   

14.
15.
16.
《Scripta materialia》2004,50(7):973-976
The phase transformation of the mixed “glassy + submicron β-Zr solid solution particles” structure in Zr65Ni10Al7.5Cu7.5Ti5Nb5 on heating is studied. bcc β-Zr solid solution particles dissolve in the glassy phase while the nanoscale particles of the icosahedral phase precipitate after the completion of the first exothermic reaction.  相似文献   

17.
Weathering steel manufactured with high concentrations of copper (0.5 wt%), chromium (0.5 wt%) and nickel (2.4 wt%) was studied with the aim of furthering knowledge on corrosion product characterization and performance in marine environments. Specimens exposed for two years in a rural atmosphere and two marine environments were characterized by optical microscopy, SEM/EDS, XRD and Raman spectroscopy and corrosion rates measured. The main phases found were ferrihydrite, maghemite and goethite in the inner corrosion layer, and lepidocrocite in the outer layer. Cu and Ni were homogeneously distributed while Cr tended to be concentrated in the inner layer.  相似文献   

18.
Thin films of Ni–Mn–Ga alloy ranging in thickness from 10 to 100 nm have been epitaxially grown on MgO(1 0 0) substrate. Temperature-dependent X-ray diffraction measurements combined with room-temperature atomic force microscopy and transmission electron microscopy highlight the structural features of the martensitic structure from the atomic level to the microscopic scale, in particular the relationship between crystallographic orientations and twin formation. Depending on the film thickness, different crystallographic and microstructural behaviours have been observed: for thinner Ni–Mn–Ga films (10 and 20 nm), the L21 austenitic cubic phase is present throughout the temperature range being constrained to the substrate. When the thickness of the film exceeds the critical value of 40 nm, the austenite-to-martensite phase transition is allowed. The martensitic phase is present with the unique axis of the pseudo-orthorhombic 7M modulated martensitic structure perpendicular to the film plane. A second critical thickness has been identified at 100 nm where the unique axis has been found both perpendicular and parallel to the film plane. Magnetic force microscopy reveals the out-of-plane magnetic domain structure for thick films. For the film thickness below 40 nm, no magnetic contrast is observed, indicating an in-plane orientation of the magnetization.  相似文献   

19.
The phase field model of dislocations has been used to study the propagation of dislocation ribbons with an overall Burgers vector of a〈1 1 2〉 through a simulated Ni-base superalloy. The driving force for dislocation dissociation reactions and formation of planar faults is incorporated into the free energy functional using periodic functions specially fitted to ab initio γ-surface data. The model shows that the mechanism of cutting of the γ′ precipitates by these ribbons exhibits significant dependence on stress magnitude, orientation and precipitate shape. In the case of mixed screw–edge ribbons a change of shearing mode is observed, from stacking fault shear to anti-phase boundary shear, when the applied stress approaches the yield of the material. This transition is absent in pure edge ribbons.  相似文献   

20.
《Acta Materialia》2008,56(16):4369-4377
Upon aging at 300–450 °C, nanosize, coherent Al3(Sc1−xTix) precipitates are formed in pure aluminum micro-alloyed with 0.06 at.% Sc and 0.06 at.% Ti. The outstanding coarsening resistance of these precipitates at these elevated temperatures (61–77% of the melting temperature of aluminum) is explained by the significantly smaller diffusivity of Ti in Al when compared to that of Sc in Al. Furthermore, this coarse-grained alloy exhibits good compressive creep resistance for a castable, heat-treatable aluminum alloy: the creep threshold stress varies from 17 MPa at 300 °C to 7 MPa at 425 °C, as expected if the climb bypass by dislocations of the mismatching precipitates is hindered by their elastic stress fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号