首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Full dense alumina + 40 vol.% aluminium titanate composites were obtained by colloidal filtration and fast reaction-sintering of alumina/titania green bodies by spark plasma sintering at low temperatures (1250–1400 °C). The composites obtained had near-to-theoretical density (>99%) with a bimodal grain size distribution. Phase development analysis demonstrated that aluminium titanate has already formed at 1300 °C. The mechanical properties such as Vickers hardness, flexural strength and fracture toughness of bulk composites are significantly higher than those reported elsewhere, e.g. the composite sintered at 1350 °C show values of about 24 GPa, 424 MPa and 5.4 MPa m1/2, respectively. The improved mechanical properties of these composites are attributed to the enhanced densification and the finer and more uniform nanostructure achieved by non-conventional fast sintering of slip-cast dense green compacts.  相似文献   

2.
HfB2–20 vol.% MoSi2 ultra high temperature ceramic composites were prepared through aqueous gelcasting route. The stability of HfB2 and MoSi2 suspensions were studied by zeta potential measurements, sedimentation tests and apparent viscosity measurements. The solids loading had significant effects on the green and sintered densities, microstructure and mechanical properties of HfB2–MoSi2 composites. The values of flexural strength of the green and sintered bodies ranged from 18.3 to 38.7, and 111.5 to 415.9 MPa, respectively, which were strongly dependent on the solids loading. The values of fracture toughness of the sintered bodies ranged from 2.18 to 4.24 MPa m1/2. The highest relative density, mechanical properties and the most homogeneous microstructure was obtained when the solids loading was 45 vol.%. The highest green strength, flexural strength and fracture toughness were 38.7 ± 5.3 MPa, 415.9 ± 17.0 MPa and 4.24 ± 0.22 MPa m1/2, respectively.  相似文献   

3.
High-density BAS/SiC composites were obtained from β-SiC starting powder by the spark plasma sintering technique. Various physical properties of the BAS/SiC composites were investigated in detail, such as densification, phase analysis, microstructures and mechanical properties. The results demonstrated that the relative density of the BAS/SiC composites reached over 99.4% at 1900 °C. The SiC grains were uniformly distributed in the continuous BAS matrix which is probably because of complete infiltration of the SiC particles in BAS liquid-phase formed during sintering. The pull-out of SiC particles, crack deflection and bridging were observed as the major toughening mechanism. The flexural strength and fracture toughness of the BAS/SiC composites sintered at 1900 °C were up to 560 MPa and 7.0 MPa·m1/2, respectively.  相似文献   

4.
In the present work, HA reinforced with Al2O3 and multiwalled carbon nanotubes (CNTs) is processed using spark plasma sintering (SPS). Vickers micro indentation and nanoindentation of the samples revealed contrary mechanical properties (hardness of 4.0, 6.1, and 4.4 GPa of HA, HA–Al2O3 and HA–Al2O3–CNT samples at bulk scale, while that of 8.0, 9.0, and 7.0 GPa respectively at nanoscale), owing to the difference in the interaction of the indenter with the material at two different length scales. The addition of Al2O3 reinforcement has been shown to enhance the indentation fracture toughness of HA matrix from 1.18 MPa m1/2 to 2.07 MPa m1/2. Further CNT reinforcement has increased the fracture toughness to 2.3 times (2.72 MPa m1/2). In vitro biocompatibility of CNT reinforced HA–Al2O3 composite has been evaluated using MTT assay on mouse fibroblast L929 cell line. Cell adhesion and proliferation have been characterized using scanning electron microscopy (SEM), and have been quantified using UV spectrophotometer. The combination of cell viability data as well as microscopic observations of cultured surfaces suggests that SPS sintered HA–Al2O3–CNT composites exhibit the ability to promote cell adhesion and proliferation on their surface and prove to be promising new biocompatible materials.  相似文献   

5.
《Materials Research Bulletin》2003,38(9-10):1509-1517
Mechanical properties of in-situ toughened Al2O3/Fe3Al nano-/micro-composites were measured. Effects of Fe3Al content, sintering temperature and holding time on properties and microstructure of the composites were investigated. The addition of Fe3Al nano-particles decreased the aspect ratio and grain size of Al2O3, and changed the fracture mode of composites. The maximum bending strength and fracture toughness were 832 MPa and 7.96 MPa m1/2, which were obtained in Al2O3/5 wt.% Fe3Al sintered at 1530 °C and Al2O3/10 wt.% Fe3Al sintered at 1600 °C, respectively. Compared to monolithic alumina, the strength increased by 132% and the toughness increased by 73%. The improvement in the mechanical properties of the composites was attributed to the change in fracture mode from intergranular fracture to transgranular fracture, the “in-situ reinforced effect” arising from the platelet grains of Al2O3 matrix, refined microstructure by dispersoids, as well as crack deflection and bridging of intergranular and intragranular Fe3Al.  相似文献   

6.
Mullite–zirconia ceramic composites are prepared by reaction sintering of plasma spheroidized (PS) zircon–alumina powders in a spark plasma sintering (SPS) system at 1000, 1100, 1200 and 1300 °C with duration of 10 and 30 min. At SPS temperature of 1000 °C, evidence of zircon decomposition is detected, while at 1200 °C, mullite formation dominates the process, resulting in significant increases in microhardness, Young's modulus and fracture toughness values. At SPS temperature of 1300 °C, due to re-crystallization, rapid grain growth, and intergranular micro cracking, there is a slight decrease of microhardness and Young's modulus values. Yet, fracture toughness as high as 11.2±1.1 MPa m1/2 is obtained by the indentation technique. The results indicate that with optimized sintering parameters, a combination of PS and SPS is effective in preparing high performance mullite/ZrO2 composites from zircon/alumina mixtures at a relatively low reaction sintering temperature.  相似文献   

7.
Nanostructured cobalt powders with an average particle size of 50 nm were synthesized using a polyol method and subsequently consolidated by spark plasma sintering (SPS). SPS experiments performed at 650 °C with sintering times ranging from 5 to 45 min under a pressure of 100 MPa, yielded to dense bulk nanostructured cobalt (relative density greater than 97%). X-ray diffraction patterns of the as-prepared powders showed only a face centered cubic (fcc) crystalline phase, whereas the consolidated samples exhibited a mixture of both fcc and hexagonal close packed (hcp) phases. Transmission electron microscopy observations revealed a lamellar substructure with a high density of nanotwins and stacking faults in every grain of the sintered samples. Room temperature compression tests, carried out at a strain rate of 10 3 s 1, yielded to highest strain to fracture values of up to 5% for sample of holding time of 15 min, which exhibited a yield strength of 1440 MPa, an ultimate strength as high as 1740 MPa and a Young's modulus of 205 GPa. The modulus of elasticity obtained from the nanoindentation tests, ranges from 181 to 218 GPa. The lowest modulus value of 181 GPa was obtained for the sample with the highest sintering time (45 min), which could be related to mass density loss as a consequence of trapped gases releasing.  相似文献   

8.
Micro/nano-sized bamboo fibrils (MBF) and a modified soy protein resin were used to fabricate environmentally friendly composites. With the incorporation of MBF the fracture stress and Young’s modulus of the soy protein concentrate (SPC) increased significantly. With the addition of 30 parts of MBF (SPC is 100 parts, based on weight), the fracture stress and Young’s modulus were increased from 20.2 MPa to 59.3 MPa and from 596 MPa to 1816 MPa, respectively. The addition of MBF, however, did not show significant decrease in the fracture strain of the specimens. As a result, the toughness of the MBF reinforced SPC increased. The toughness of the SPC based composites containing 30 parts of MBF was 6.0 MPa compared to 2.7 MPa for SPC without MBF. MBF reinforced SPC was then cross-linked using a silane, (3-isocyanatopropyl)triethoxysilane (ITES). Although the fracture strength and Young’s modulus did not show significant increase, the modification using ITES showed significant increase in the fracture toughness. SPC containing 30 parts of MBF, 10 parts of ITES and 2 parts of glycerol showed fracture stress of 82 MPa, Young’s modulus of around 3.2 GPa and toughness of 4.3 MPa. The environment-friendly, fully biodegradable green composites, based on MBF and modified SPC resins, have excellent properties and great potential to replace the traditional petroleum-based materials in many applications.  相似文献   

9.
Porous titanium-hydroxyapatite (Ti/HA) composite is a developed composite material suitable for bio-medical applications. Powder injection molding (PIM) with space holder method is used to produce porous Ti/HA with mechanical properties, similar to human bone, and pores helps to initiate tissue growth. However, the differences in physical and mechanical properties of these composites are the main challenges during debinding and sintering. Therefore, the main objective is to determine effects of binder systems and processing parameters on formability of Ti/HA composite. In PIM, a binder system is necessary to produce green and ultimately sintered part. There are two binder systems and variation of sintering temperature has been used. Results revealed that Polyethylene glycol (PEG)-based binder system is applicable with NaCl space holder and optimum sintering parameters, including temperature, heating rate, and holding time of 1300 °C, 10 °C/min, and 5 h, respectively. The fabricated porous Ti/HA exhibits average porosity, pore size distribution, compressive strength, and roughness values of 55%, 60 μm to 170 μm, 370 MPa, and 0.323 μm, respectively. FESEM results showed that the pores are interconnected. It may be an appropriate material for future bio-medical applications.  相似文献   

10.
Diamond/Al composites were prepared by vacuum hot pressing (VHP) to get high thermal properties. The sintering temperature, pressure and time in the VHP process were optimized. Microstructures, thermal properties, interface reaction product and its effect on the properties of the composites were investigated. The result shows that the sintering temperature and time are key parameters to get high thermal property of the composites. The composites with 20–55 vol% diamond sintered at 650 °C for 90 min under a pressure of 67 MPa exhibit thermal conductivities of 320–567 W/mK, over 90% of the theoretical predictions by the differential effective medium (DEM) scheme. The high thermal conductivity is attributed to the favorable interface conductance, while the formation of aluminum carbide at diamond–Al interface is found to be negative.  相似文献   

11.
Organic-coated aluminum nano-powders were consolidated by spark plasma sintering technique with low initial pressure of 1 MPa and high holding pressure of 300 MPa at different sintering temperature. The effect of sintering temperature on microstructures and mechanical properties of the compact bulks was investigated. The results indicate that both the density and the strain of the nanocrystalline aluminum increase with an increase in sintering temperature. However, the micro-hardness, compressive strength and tensile stress of the compact bulks increase initially and then decrease with increasing sintering temperature. The nanocrystalline aluminum sintered at 773 K has the highest micro-hardness of 3.06 GPa, the best compressive strength of 665 MPa and the supreme tensile stress of 282 MPa. A rapid grain growth of nanocrystalline aluminum sintered at 823 K leads to a decrease in micro-hardness, compressive strength and tensile stress. After annealing, a remarkable increase in strain and a slight rise in strength were obtained due to the relief of the residual stress in nanocrystalline Al and the formation of composite structure.  相似文献   

12.
Hydroxyapatite (HA) compacts having average grain sizes of 168 ± 0.086 nm, 1.48 ± 0.627 μm and 5.01 ± 1.02 μm are processed from synthesized HA powder by microwave sintering at varying sintering temperature for different times. Superior mechanical and biological properties are shown by nano-grain HA compacts as compared to their micron grained counterparts. Compressive strength, indentation hardness, and indentation fracture toughness are increased with the decrease in HA grain size. The highest surface energy and maximum wettability are exhibited by nano-grain HA. HA compacts are assessed for cell–material interaction by SEM, MTT and immunochemistry assays using human osteoblast cell line for 1, 5 and 11 days. MTT assays showed higher number of living cells and faster proliferation on nano-grain HA surface. Osteoblast cells on nano-grain HA surface expressed significantly higher amount of vinculin and alkaline phosphatase (ALP) protein markers for cell adhesion and differentiation respectively. This study shows the effect of grain size on physical, mechanical and in vitro biological properties of microwave sintered HA compacts.  相似文献   

13.
Hydrophobic cellulose nanofibers (CNFs) were prepared by surface modification using alkenyl succinic anhydride (ASA). The hydrophobicity of CNFs was varied by changing the degree of substitution (DS) from 0 to 0.83. Modified CNFs were mixed with high-density polyethylene (HDPE) using a twin-screw extruder and the resulting composites were injection molded. The tensile properties initially improved with increasing DS up to ∼0.3–0.5, and then decreased with further substitution. The tensile strength and modulus of 10 wt.% HDPE/CNF composites containing 8.8 wt.% ASA (DS: 0.44) were 43.4 MPa and 1.97 GPa, respectively. These values were both almost 70% higher than those of composites containing unmodified CNF, and 100% and 86% higher, respectively, than those for pure HDPE. X-ray computed tomography measurements showed that CNFs modified with a DS of 0.44 were dispersed uniformly within the resin matrix, whilst unmodified CNFs and those modified with a DS of 0.77 agglomerated within the composites.  相似文献   

14.
In this paper, gelcasting and pressureless sintering of YAG gel coated ZrB2–SiC (YZS) composite were conducted. YAG gel coated ZrB2–SiC (YZS) suspension was firstly prepared through sol–gel route. Poly (acrylic acid) was used as dispersant. YZS suspension had the lowest viscosity when using 0.6 wt.% PAA as dispersant. Gelcasting was conducted based on AM–MBAM system. The gelcast YZS sample was then pressureless sintered to about 97% density. During sintering, YAG promoted the densification process from solid state sintering to liquid phase sintering. The average grain sizes of ZrB2 and SiC in the YZS composite were 3.8 and 1.3 μm, respectively. The flexural strength, fracture toughness and microhardness were 375 ± 37 MPa, 4.13 ± 0.45 MPa m1/2 and 14.1 ± 0.5 GPa, respectively.  相似文献   

15.
The toughening effect of the short carbon fibers in the ZrB2–ZrSi2 ceramic composites were investigated, where the ZrB2–ZrSi2 ceramics without carbon fibers were used as the reference. The mechanical properties were evaluated by means of flexural and SENB tests, respectively. The microstructure was characterized by SEM equipped with EDS. The results found that the short carbon fibers were uniformly incorporated in the ZrB2–ZrSi2 matrix and the relative density was about 97.92%. The flexural strength of short carbon fiber-reinforced ZrB2–ZrSi2 composites is 437 MPa; the fracture toughness and the work of fracture are 6.89 MPa m1/2 and 259 J/m2, respectively, which increased significantly in comparing with composites without fibers. The microstructure analysis revealed that the improved fracture toughness could be attributed to the fiber bridging, the fiber–matrix interface debonding and the fiber pullout, which consumed more fracture energy during the fracture process.  相似文献   

16.
The mechanical properties of reaction-bonded silicon carbide (RBSC) composites at cryogenic temperatures have been reported for the first time. The results show that the flexural strength and fracture toughness increase from 277.93 ± 23.21 MPa to 396.74 ± 52.74 MPa and from 3.69 ± 0.45 MPa·m1/2 to 4.98 ± 0.53 MPa·m1/2 as the temperature decreases from 293 K to 77 K, respectively. The XRD analysis of the phase composition reveals that there is no phase transformation in the composites at cryogenic temperatures, indicating cryogenic mechanical properties are independent of phase composition. The enhancement of mechanical properties at 77 K over room temperature could be explained by the transition of fracture mode from predominant transgranular fracture to intergranular fracture and stronger resistance to crack propagation resulting from higher residual stress at 77 K. The above results demonstrate that such composites do not undergo similar deteriorations in the fracture toughness as other materials (some kinds of metals and polymers), so it is believed that such composites could be a potential material applied in cryogenic field.  相似文献   

17.
This study reports the microstructural analysis and mechanical properties of a ZrB2 ceramic containing long BN-coated Hi-Nicalon SiC fibers. A composite was produced and thoroughly characterized by transmission electron microscopy to study the interfaces at the nanoscale level. Full densification was accomplished by hot pressing at 1450 °C. The fiber in the sintered material retained its pristine aspect, confirming that the coating was effective in preventing degradation due to interactions with the matrix. Pull-out was observed on fractured surfaces, but toughness values were about 4.5 MPa√m, which was comparable to those of ZrB2 materials with SiC additions in the form of particles or short fibers. However, the composites exhibited a controlled fracture behavior, as confirmed by a notably higher work of fracture, 140 J/m2, compared with 20–30 J/m2 of unreinforced ZrB2 or ZrB2 containing chopped fibers.  相似文献   

18.
Entangled steel wire (Q195F) with total porosity of 36.3 ± 1.3 to 61.8 ± 2.4% and pore sizes of 15–825 µm have been investigated in terms of the porous morphologies, impact deformation and failure behavior. The results reveal that the impact toughness increases with the decrease of the porosity. The sintered entangled steel wire materials with 61.8 ± 2.4% porosity exhibit an average of 11.8 J/cm2 impact toughness. With 36.3 ± 1.3% porosity, the sintered materials have an average of 45.5 J/cm2 impact toughness. Impact absorbing energy and impact toughness have been obtained by Charpy impact testing. Essential impact deformation and failure mechanisms such as pore edges (i.e. fibers) bending, bulking, rotating, yielding, densification and fracture, as well as break (or avulsion) of sintering points in the steel wire framework contribute to the excellent energy-absorbing characteristics under impact loading condition.  相似文献   

19.
《Composites Part A》2005,36(10):1430-1439
Static strength tests were carried out for cured carbon nano-fiber (CNF) dispersed resin as tow-phase composites and for CFRP laminates using CNF dispersed resin as three-phase composites. To obtain these CFRP laminates, the CNF dispersed resin was impregnated to CF reinforcement and cured by hot press. The CNF used was a cup-stacked type of nano-fiber, CARBERE®, made by GSI CREOS Corporation, Japan. Two CNF aspect ratios of 10 and 50 were employed. These fiber lengths of the CNF were controlled about 1000 nm (AR10) and 5000 nm (AR50), respectively. The CNF was dispersed to EPIKOTE 827® epoxy resin in two values of CNF weight ratios, 5 and 10% to the resin. TORAYCA® C6343 plain woven fabric was used for reinforcement of the CFRP laminates. The cure condition with the agent of aromatic amine EPIKURE W® was 100 °C for two hours followed by a post cure of 175 °C for 4 h. The static strength tests led to the conclusion that the dispersion of CNF into epoxy improves mechanical properties of the tow-phase composites, and that CFRP laminates with CNF dispersed resin also exhibit higher compressive strength than CFRP laminates without CNF as control. Possibilities of improvement in mechanical properties were confirmed in the two and three-phase composites. Moreover, a proportional tendency in strength improvements to CNF weight content was found in the two present composites so far in the present test results.  相似文献   

20.
Mechanical performance of three oxide/oxide ceramic matrix composites (CMCs) based on Nextel 610 fibers and SiOC, alumina, and mullite/SiOC matrices respectively, is evaluated herein. Tensile strength and stiffness of all materials decreased at 1000 °C and 1200 °C, probably because of degradation of fiber properties beyond 1000 °C. Microstructural changes in the composites during exposure at 1000 °C and 1200 °C for 50 h reduce their flexural strength, fracture toughness and work of fracture. A literature review regarding mechanical properties of several oxide/oxide CMCs revealed lower influence of fiber properties on composite strength compared with elastic modulus. The tested composites exhibit comparable stiffness and strength but higher fracture toughness compared with average values determined from a literature review. Considering CMCs with different compositions, we observed an interesting linear trend between strength and fracture toughness. The validity of the linear relationship between fracture strength and flexural toughness for CMCs is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号