首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
P. Lin  R.Z. Wang  Z.Z. Xia 《Renewable Energy》2011,36(5):1401-1412
Two-stage air-cooled ammonia–water absorption refrigeration system could make good use of low-grade solar thermal energy to produce cooling effect. The system simulation results show that thermal COP is 0.34 and electrical COP is 26 under a typical summer condition with 85 °C hot water supplied from solar collector. System performances under variable working conditions are also analyzed. Circular finned tube bundles are selected to build the air-cooled equipment. The condenser should be arranged in the front to get an optimum system performance. The mathematical model of the two-stage air-cooled absorber considering simultaneous heat and mass transfer processes is developed. Low pressure absorber should be arranged in front of middle pressure absorber to minimize the absorption length. Configuration of the air-cooled equipment is suggested for a 5 kW cooling capacity system. Temperature and concentration profiles along the finned tube length show that mass transfer resistance mainly exists in liquid phase while heat transfer resistance mainly exists in cooling air side. The impacts on system refrigeration capacities related to absorption behaviors under variable working conditions are also investigated. Both cycle analysis and absorption performances show that two-stage air-cooled ammonia–water absorption chiller is technically feasible in practical solar cooling applications.  相似文献   

2.
3.
Small capacity, air-cooled NH3–H2O absorption systems are becoming more attractive in applications where the input energy can be obtained for free (e.g., solar energy, exhaust gases of engines), due to the increasing price of the primary energy. One of the main difficulties for a wider use of absorption machines is the necessary high initial investment. For this reason, the development of air-cooled systems could be an important achievement for low capacity applications. In this work, two types of air-cooled absorber have been modelled: (i) falling film flow; (ii) bubble flow. The two models have been validated with experimental data obtained from a developed testing device and published numerical results of other authors from another model. The agreement is acceptable for both cases. Finally, a parametric study has been done for air-conditioning and refrigeration in a mobile application taking advantage of the exhaust gases of the engine. In both cases, the performance of the bubble absorber has been higher.  相似文献   

4.
Thermodynamic analysis of absorption systems is a very complex process, mainly because of the limited experimental data and analytical functions required for calculating the thermodynamic properties of fluid pairs, which usually involves the solution of complex differential equations. In order to simplify this complex process, Artificial Neural Networks (ANNs) are used. In this study, ANNs are used as a new approach for the determination of the thermodynamic properties of LiBr–water and LiCl–water solutions which have been the most widely used in the absorption heat pump systems. Instead of complex differential equations and limited experimental data, faster and simpler solutions were obtained by using equations derived from the ANN model. It was found that the coefficient of multiple determination (R2-value) between the actual and ANN predicted data is equal to about 0.999 for the enthalpy of both LiBr–water and LiCl–water solutions. As seen from the results obtained, the calculated thermodynamic properties are obviously within acceptable limits. In addition, the coefficient of performance (COP) of absorption systems operating under different conditions with LiBr–water and LiCl–water solutions is calculated. The use of the derived equations, which can be employed with any programming language or spreadsheet program for the estimation of the enthalpy of the solutions, as described in this paper, may make the use of dedicated ANN software unnecessary.  相似文献   

5.
A computational model is developed for the parametric investigation of single‐effect and series flow double‐effect LiBr/H2O absorption refrigeration systems. The effects of generator, absorber, condenser, evaporator and dead state temperatures are examined on the performance of these systems. The parameters computed are coefficient of performance (COP), exergy destruction rates, thermal exergy loss rates, irreversibility and exergetic efficiency. The results indicate that COP and exergetic efficiency of both the systems increase with increase in the generator temperature. There exist different optimum values of generator temperature for maximum COP and maximum exergetic efficiency. The optimum generator temperature is lower corresponding to maximum exergetic efficiency as compared to optimum generator temperature corresponding to maximum COP. The effect of increase in absorber, condenser and evaporator temperatures is to decrease the exergetic efficiency of both the systems. The irreversibility is highest in absorber in both systems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Electrochemical processes may be used to form thermodynamic cycles in a variety of manners. In this paper, an electrochemical cell and fuel cell are combined to form a refrigeration cycle. Water is chosen as an example for the analysis in order to show ideal performance characteristics of such a cycle. Ideally, the system is close to Carnot performance. In actual systems, the electrolyser side of the system must be operated below neutral voltage levels in order to achieve a refrigeration effect. For the water‐based system results presented, water mass flow rates less than 6 kg per h are required per ‘ton’ of refrigeration effect for the ideal system. The effects of operating temperatures on cycle efficiency for the example system are also presented. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

7.
The double-effect vapour absorption refrigeration system working with HFC134a as refrigerant and dimethyl acetamide as absorbent is analysed. Cooling coefficients of performance in the range of 0·5–0·9 could be obtained depending on the operating conditions. However, sub-zero temperatures are difficult to obtain at typical heat source and heat rejection temperatures. Hence, cascaded systems are suggested for achieving low temperatures. © 1998 John Wiley & Sons, Ltd.  相似文献   

8.
This paper traces the thermodynamic analysis of a combined supercharged diesel engine with intercooling and an absorption refrigeration unit. Based on thermodynamic laws, the amount of net work, efficiency, and also the amount of cooling capacity available in the exhaust gases, which can be used for engine intercooling or external air-conditioning purposes or both, have been calculated. The influence of the engine configuration and performance parameters on the performance of an ideal system is examined and the acceptable envelope identified. Graphs of net work, efficiency and cooling capacity of the exhaust gases as a function of pressure ratio and temperature ratio of the cycle are given.  相似文献   

9.
This paper presents an investigation of an ammonia-water absorption cycle for solar refrigeration, airconditioning and heat pump operations at higher heat supply temperatures. The system consists of a solar driven generator, rectifier, condenser, evaporator, absorber and heat exchangers for preheating and subcooling within the system. A steady state thermodynamic cycle analysis based on mass and heat balances along with the state equations for the thermodynamic properties of the ammonia-water mixture has been carried out. A numerical computer simulation of the system with input component temperatures, refrigerant concentration/mass flow rate and effectiveness of the heat exchangers has been made to evaluate the relative heat transfer rates (i.e. coefficients of performance) and the mass flow rates for the cooling/heating modes. It is found that unlike the low generator temperature behaviour the coefficients of performance for both cooling and heating modes are reduced at higher generator temperatures. However, an increase of condenser temperature for each mode of operation improves the performance of the systems at higher generator temperatures. A choice for keeping the absorber temperature equal to/lower than that of the condenser is also predicted at lower/higher generator temperatures, respectively. In general the results are more pronounced for the refrigeration mode than for the heat pump mode and are least effective for the airconditioning mode.  相似文献   

10.
许行  宋鸿杰 《能源工程》2011,(4):32-35,40
用绝热分析法建立并模拟了斯特林循环的理想绝热模型,仿真结果显示,增大循环压力能提高斯特林发动机的做功能力,这为以后建立非理想绝热模型和节点分析模型奠定了基础.  相似文献   

11.
In a double-effect series flow vapour absorption refrigeration system (VARS), an optimum value of the low-pressure generator temperature exists at which all the vapour generated at the high-pressure generator is condensed. At these conditions, a comparative study of the performance of VARS using environment friendly refrigerants such as, R32, R134a, and R124 with N,N′-dimethyl acetamide (DMAC) as the absorbent is made. It is found that the system with R32-DMAC gives the best performance at high evaporator temperatures. R124-DMAC may be preferred at extreme operating conditions like low evaporator and high heat rejection temperatures. Influence of operating temperatures (high-pressure generator, evaporator, condenser and absorber) and the effectiveness of heat exchangers on the optimum low-pressure generator temperature, cut-off temperature, circulation ratio and coefficient of performance are studied. © 1998 John Wiley & Sons, Ltd.  相似文献   

12.
A comparative thermodynamic study of the vapour absorption refrigeration systems (VARS) working with HFC134a and HCFC22 is presented. Due to its superior performance in HCFC22-based VARS, dimethyl acetamide is chosen as the solvent for both the refrigerants. It is observed that the HCFC22-based system yields significantly better COP than the HFC134a system. However, since the latter operates at lower pressures, the possibility exists to improve its COP by resorting to two-stage operation. © 1998 John Wiley & Sons, Ltd.  相似文献   

13.
In order to study the theoretical cycle characteristic of [mmim]DMP(1-methyl-3-methylimidazolium dimethylphosphate)/methanol absorption refrigeration,the modified UNIFAC group contribution model and the Wilson model are established through correlating the experimental vapor pressure data of [mmim]DMP/methanol at T=280~370K and methanol mole fraction x=0.529~0.965.Thermodynamic performances of absorption refrigeration utilizing [mmim]DMP/methanol,LiBr/H2O and H2O/NH3 are investigated and compared with each other under the same operating conditions.From the results,some conclusions are obtained as follows:1)the circulation ratio of the [mmim]DMP /methanol absorption refrigeration is higher than that of the LiBr/H2O absorption refrigeration,but still can be acceptable and tolerable.2)The COP of the [mmim]DMP/methanol absorption refrigeration is smaller than that of the LiBr/H2O absorption refrigeration,while it is higher than that of the H2O/NH3 absorption refrigeration under most operating conditions.3)The[mmim]DMP/methanol absorption refrigeration are still available with high COP when the heat source temperature is too high to drive LiBr/H2O absorption refrigeration.  相似文献   

14.
Three classes of double‐effect lithium bromide–water absorption refrigeration systems (series, parallel and reverse parallel) with identical refrigeration capacities are studied and compared thermodynamically. In order to simulate the performances of the systems, a new set of computationally efficient formulations is used for thermodynamic properties of Li‐Br solutions at equilibrium. The simulation results are used to examine the influence of various operating parameters on the first and second law performance characteristics of the systems. In addition, the dependences are investigated of system performance on the effectivenesses of the solution heat exchangers, the pressure drops between the evaporator and the absorber and between the low‐pressure generator and the condenser, and the low‐grade heat externally supplied to the low‐pressure generator. The results reveal the advantages and disadvantages of different configurations of double‐effect lithium bromide–water absorption refrigeration systems, and are expected to be useful in the design and control of such systems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
The use of ideal absorption cycles with external heat transfer irreversibilities to obtain the performance limits of solar-operated absorptions systems is considered in this paper. The absorption machine is represented by the three-heat-reservoir ideal cycle and it is supplied with energy from a solar collector–storage system. Analytical expressions are obtained for the coefficient of performance, the cooling capacity, the entropy production and the second-law efficiency of the system. The results obtained for cycles with external heat transfer irreversibilities and for fully reversible cycles are compared with those obtained by detailed simulation of the absorption machine. Externally irreversible cycles are found to give realistic upper limits to the cooling capacity and the coefficient of performance of solar-powered absorption cooling systems.  相似文献   

16.
It is proven that a solar absorption heat transformer affected by the irreversibility of finite-rate heat transfer may be modelled as an equivalent combined system consisting of a solar collector and an endoreversible absorption heat transformer, the latter being further treated as a combined cycle having an endoreversible heat pump driven by an endoreversible heat engine. The maximum coefficient of performance of the system is determined, based on the linear heat loss model for solar collectors and the general optimum relation for endoreversible absorption heat transformers. The optimality problems concerning the primary performance parameters of the system are discussed. The results obtained here may serve as a good guide for the evaluation of existing real solar absorption heat transformers or provide some theoretical bases for the optimal design of future solar absorption heat transformers. © 1997 by John Wiley & Sons, Ltd.  相似文献   

17.
A novel lithium bromide/water mixed absorption refrigeration cycle that is suitable for the utilization of solar air-conditioning and can overcome the draw-backs of low system overall efficiency of traditional solar absorption refrigeration air-condition systems is presented. The accessorial high pressure generator was added in the cycle. The lithium bromide solution flowing out from the high pressure generator was mixed with the solution from the low pressure absorber to increase lithium bromide solution concentration and decrease pressure in the high pressure absorber. The performance of a mixed absorption refrigeration cycle was analyzed. The theoretical analysis shows that the highest COP is 0.61, while the highest available temperature difference of heat resource is 33.2°C. The whole coefficient of performance of the solar air-conditioning using mixed absorption cycle is 94.5% higher than that of two-stage absorption. The advantages of solar air-conditioning can be markedly made use of by the cycle. __________ Translated from Journal of Huazhong University of Science and Technology, 2006, 34(8): 62–64 [译自: 华中科技大学学报]  相似文献   

18.
A novel lithium bromide/water mixed absorption refrigeration cycle that is suitable for the utilization of solar air-conditioning and can overcome the drawbacks of low system overall efficiency of traditional solar absorption refrigeration air-condition systems is presented. The accessorial high pressure generator was added in the cycle. The lithium bromide solution flowing out from the high pressure generator was mixed with the solution from the low pressure absorber to increase lithium bromide solution concentration and decrease pressure in the high pressure absorber. The performance of a mixed absorption refrigeration cycle was analyzed. The theoretical analysis shows that the highest COP is 0.61, while the highest available temperature difference of heat resource is 33.2°C. The whole coefficient of performance of the solar air-conditioning using mixed absorption cycle is 94.5% higher than that of two-stage absorption. The advantages of solar air-conditioning can be markedly made use of by the cycle.  相似文献   

19.
The determination of the cooling capacity and overall heat transfer coefficient of an evaporator is of great importance in refrigeration industry, so that, an investigation of the theoretical and experimental performance analysis of evaporators was carried out in this study. The experimental evaporator was analyzed in account with the most common and widely used correlations together with the parameters of air velocity, fin spacing, tube diameter, evaporator temperature, refrigerant type and frost height. After a good agreement between the experimental and theoretical results was obtained, the parameters which had not been able to investigated experimentally were analyzed theoretically. It is concluded that when the experimental and theoretical overall heat transfer coefficients were compared with those from the manufacturing catalogues (for the same working conditions), the latter was found to be 15–30% higher than the former one.  相似文献   

20.
《Energy》1999,24(9):795-809
A cycle analysis was achieved to predict the characteristics by comprehensive modelling and simulation of an air-cooled, double-effect absorption system using the new H2O/LiBr+HO(CH2)3OH solution. The simulation results showed that the new working fluid may provide the crystallisation limit 8% higher than the conventional H2O/LiBr solution. With a crystallisation margin of 3 wt%, the optimal solution distribution ratio was found to be in the range of 37–39%. Variation of cooling air inlet temperature had a sensitive effect on the cooling coefficient of performance (COP) and corrosion problem. The simulation of heat exchangers with UA value revealed that the absorber and evaporator were relatively important for an air-cooled system compared with the condenser and the low temperature generator. The effects of cooling air flow rate, circulation weak solution flow rate and chilled water inlet temperature were also examined. The new working fluid may provide a COP approximately 3% higher than the conventional H2O/LiBr solution in normal conditions of circulation weak solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号