首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Condensation heat transfer and pressure drop of R22, R410A and R407C were investigated experimentally in two single round stainless steel tubes with inner diameter of 1.088 mm and 1.289 mm. Condensation heat transfer coefficients and two phase pressure drop were measured at the saturation temperatures of 30 °C and 40 °C. The mass flux varies from 300 to 600 kg/m2 s and the vapor quality 0.1–0.9. The effects of mass flux and vapor quality were investigated and the results indicate that condensation heat transfer coefficients increase with mass flux and vapor quality, increasing faster in the high vapor quality region. The experimental data was compared with the correlations based on experimental data from large diameter tubes (dh > 3 mm), such as the Shah and Akers correlations et al. Almost all the correlations overestimated the present experimental data, but Wang correlation and Yan and Lin correlation which were developed based on the experimental data from mini-tubes predicted present data reasonably well. Condensation heat transfer coefficients and two phase pressure drop of R22 and R407C are equivalent but both higher than those of R410A. As a substitute for R22, R410A has more advantages than R407C in view of the characteristics of condensation heat transfer and pressure drop.  相似文献   

2.
An experiment is carried out here to investigate the characteristics of the evaporation heat transfer for refrigerants R-134a and R-407C flowing in horizontal small tubes having the same inside diameter of 0.83 or 2.0 mm. In the experiment for the 2.0-mm tubes, the refrigerant mass flux G is varied from 200 to 400 kg/m2 s, imposed heat flux q from 5 to 15 kW/m2, inlet vapor quality xin from 0.2 to 0.8 and refrigerant saturation temperature Tsat from 5 to 15 °C. While for the 0.83-mm tubes, G is varied from 800 to 1500 kg/m2 s with the other parameters varied in the same ranges as those for Di = 2.0 mm. In the study the effects of the refrigerant vapor quality, mass flux, saturation temperature and imposed heat flux on the measured evaporation heat transfer coefficient hr are examined in detail. The experimental data clearly show that both the R-134a and R-407C evaporation heat transfer coefficients increase almost linearly and significantly with the vapor quality of the refrigerant, except at low mass flux and high heat flux. Besides, the evaporation heat transfer coefficients also increase substantially with the rises in the imposed heat flux, refrigerant mass flux and saturation temperature. At low R-134a mass flux and high imposed heat flux the evaporation heat transfer coefficient in the smaller tubes (Di = 0.83 mm) may decline at increasing vapor quality when the quality is high, due to the partial dryout of the refrigerant flow in the smaller tubes at these conditions. We also note that under the same xin, Tsat, G, q and Di, refrigerant R-407C has a higher hr when compared with that for R-134a. Finally, an empirical correlation for the R-134a and R-407C evaporation heat transfer coefficients in the small tubes is proposed.  相似文献   

3.
The experimental stand and procedure for flow boiling investigations are described. Experimental data for pure R22, R134a, R407C and their mixtures with polyester oil FUCHS Reniso/Triton SEZ 32 in a tube with porous coating and smooth, stainless steel reference tube are presented. Mass fraction of oil was equal to 1% or 5%. During the tests inlet vapour quality was set at 0 and outlet quality at 0.7. Mass velocity varied from about 250 to 500 kg/m2s. The experiments have been conducted for average saturation temperature 0 °C. In the case of flow boiling of pure refrigerants, the application of a porous coating on inner surface of a tube results in higher average heat transfer coefficient and simultaneously in lower pressure drop in comparison with the flow boiling in a smooth tube for the same mass velocity. Correlation equation for heat transfer coefficient calculation during the flow boiling of pure refrigerants inside a tube with porous coating has been proposed.  相似文献   

4.
An experimental study is carried out to investigate the characteristics of the evaporation heat transfer for different fluids. Namely, pure refrigerants fluids (R22 and R134a), azeotropic and quasi-azeotropic mixtures (R404A, R410A, R507) and zeotropic mixtures (R407C and R417A).The test section is a smooth, horizontal, stainless steel tube (6 mm ID, 6 m length) uniformly heated by the Joule effect. The flow boiling characteristics of the refrigerant fluids are evaluated in 250 different operating conditions. Thus, a data-base of more than 2000 data points is produced.The experimental tests are carried out varying: (i) the refrigerant mass fluxes within the range 200–1100 kg/m2 s; (ii) the heat fluxes within the range 3.50–47.0 kW/m2; (iii) the evaporating pressures within the range 3.00–12.0 bar.In this study, the effect on measured heat transfer coefficient of vapour quality, mass flux, saturation temperature, imposed heat flux, thermo-physical properties are examined in detail.  相似文献   

5.
Experimental investigations of tube side condensation and evaporation in two 3-D enhanced heat transfer (2EHT) tubes were compared to the performance of a smooth surface copper tube. The equivalent outer diameter of all the tubes was 12.7 mm with an inner diameter of 11.5 mm. Both the inner and outer surfaces of the 2EHT tubes are enhanced by longitudinal grooves with a background pattern made up by an array of dimples/embossments. Experimental runs were performed using R410A as the working fluid, over the quality range of 0.2–0.9. For evaporation, the heat transfer coefficient ratio (compares the heat transfer coefficient of the enhanced tube to that of a smooth tube) of the 2EHT tubes is 1.11–1.43 (with an enhanced surface area ratio of 1.03) for mass flux rate that ranges from 80 to 200 kg/m2 s. For condensation, the heat transfer coefficient ratio range is 1.1–1.16 (with an enhanced surface area ratio of 1.03) for mass flux that ranges from 80 to 260 kg/m2 s. Frictional pressure drop values for the 2EHT tubes are very similar to each other. Heat transfer enhancement in the 2EHT tubes is mainly due to the dimples and grooves in the inner surface that create an increased surface area and interfacial turbulence; producing higher heat flux from wall to working fluid, flow separation, and secondary flows. A comparison was performed to evaluate the enhancement effect of the 2EHT tubes using a defined performance factor and this indicates that the 2EHT tubes provides a better heat transfer coefficient under evaporation conditions.  相似文献   

6.
The inner surfaces of microtubes may be influenced strongly by the process of making them due to manufacturing difficulties at these scales compared to larger ones, e.g. the surface characteristics of a seamless cold drawn tube may differ from those of a welded tube. Accordingly, flow boiling heat transfer characteristics may vary. In addition, there is no common agreement between researchers on the criteria of selecting tubes for flow boiling experiments. Instead, tubes are usually ordered from commercial suppliers, in many cases without taking into consideration the manufacturing method and its effect on the heat transfer process. This may explain some of the discrepancies in heat transfer characteristics which are found in the open literature. This paper presents a comparison between experimental flow boiling heat transfer results obtained using two different metallic tubes. The first one is a seamless cold drawn stainless steel tube of 1.1 mm inner diameter while the second is a welded stainless steel tube of 1.16 mm inner diameter. Both tubes have a heated length of 150 mm and the flow direction is vertically upwards. The tubes were heated using DC current. Other experimental conditions include: 8 bar system pressure, 300 kg/m2 s mass flux, about 5 K inlet sub-cooling and up to 0.9 exit quality. The results are presented in the form of local heat transfer coefficient versus local quality and axial distance. Also, the boiling curves of the two tubes are discussed. The results show a significant effect of tube inner surface morphology on the heat transfer characteristics.  相似文献   

7.
This paper reports a study of heat transfer in the post-critical heat flux (post-CHF) regime under forced convective upflow conditions in a uniformly heated vertical tube of 12.7 mm internal diameter and 3 m length. Experiments were conducted with non-azeotropic ternary refrigerant mixture R-407C for reduced pressures ranging from 0.37 to 0.75, mass flux values from 1200 to 2000 kg/m2 s and heat flux from 50 to 80 kW/m2. Data shows a considerable effect of system pressure on the post-CHF heat transfer coefficient for specified mass and heat fluxes. The post-CHF heat transfer coefficients for R-407C are compared with three existing correlations which are found to over predict the current data. A modified correlation to represent the experimental data for R-407C is presented.  相似文献   

8.
This paper presents experimental results for flow boiling heat transfer coefficient and critical heat flux (CHF) in small flattened tubes. The tested flattened tubes have the same equivalent internal diameter of 2.2 mm, but different aspect height/width ratios (H/W) of ¼, ½, 2 and 4. The experimental data were compared against results for circular tubes using R134a and R245fa as working fluids at a nominal saturation temperature of 31 °C. For mass velocities higher than 200 kg/m2s, the flattened and circular tubes presented similar heat transfer coefficients. Such a behavior is related to the fact that stratification effects are negligible under conditions of higher mass velocities. Heat transfer correlations from the literature, usually developed using only circular-channel experimental data, predicted the flattened tube results for mass velocities higher than 200 kg/m2s with mean absolute error lower than 20% using the equivalent diameter to account for the geometry effect. Similarly, the critical heat flux results were found to be independent of the tube aspect ratio when the same equivalent length was kept. Equivalent length is a new parameter which takes into account the channel heat transfer area. The CHF correlations for round tubes predicted the flattened tube data relatively well when using the equivalent diameter and length. Furthermore, a new proposed CHF correlation predicted the present flattened tube data with a mean absolute error of 5%.  相似文献   

9.
The current paper presents experimental investigation of nucleate pool boiling of R-134a and R-123 on enhanced and smooth tubes. The enhanced tubes used were TBIIHP and TBIILP for R-134a and R-123, respectively. Pool boiling data were taken for smooth and enhanced tubes in a single tube test section. Data were taken at a saturation temperature of 4.44 °C. Each test tube had an outside diameter of 19.05 mm and a length of 1 m. The test section was water heated with an insert in the water passage. The insert allowed measurement of local water temperatures down the length of the test tube. Utilizing this instrumentation, local heat transfer coefficients were determined at five locations along the test tube. The heat flux range was 2.5–157.5 kW/m2 for the TBIIHP tube and 3.1–73.2 kW/m2 for the TBIILP tube. The resulting heat transfer coefficient range was 4146–23255 W/m2. °C and 5331–25950 W/m2. °C for both tubes, respectively. For smooth tube testing, the heat flux ranges were 7.3–130.7 kW/m2 and 7.5–60.7 kW/m2 for R-134a and R-123, respectively; with resulting heat transfer coefficient ranges of 1798.9–11,379 W/m2. °C and 535.4–3181.8 W/m2. °C. The study provided one of the widest heat flux ranges ever examined for these types of tubes and showed significant structure to the pool boiling curve that had not been traditionally observed. Additionally, this paper presented an investigation of enhanced tubes pool boiling models.  相似文献   

10.
《Applied Thermal Engineering》2007,27(16):2713-2726
Enhanced heat transfer surfaces are used in heat exchangers to improve performance and to decrease system volume and cost. In-tube heat transfer enhancement usually takes the form of either micro-fin tubes (of the helical micro-fin or herringbone varieties), or of helical wire inserts. Despite a substantial increase in heat transfer, these devices also cause non-negligible pressure drops.By making use of well-proven flow pattern maps for smooth tubes and the new ones for smooth and enhanced tubes, it is shown from the refrigerant condensation data that flow patterns have a strong influence on heat transfer and pressure drop. This is done for data obtained from in-tube condensation experiments for mass fluxes ranging from 300 to 800 kg/m2 s at a saturation temperature of 40 °C, for refrigerants R-22, R-134a, and R-407C. The flow regimes, pressure drops, heat transfer coefficients, and the overall performance of three different tubes, namely a smooth-, 18° helical micro-fin-, and a herringbone micro-fin tube (each having a nominal diameter of 9.51 mm), are presented and compared to the performance of smooth tubes with helical wire inserts (with pitches of 5 mm, 7.77 mm and 11 mm corresponding to helical angles of 78.2°, 72°, and 65.3°, respectively).  相似文献   

11.
The boiling heat transfer of refrigerant R-134a flow in horizontal small-diameter tubes with inner diameter of 0.51, 1.12, and 3.1 mm was experimentally investigated. Local heat transfer coefficient and pressure drop were measured for a heat flux ranging from 5 to 39 kW/m2, mass flux from 150 to 450 kg/m2 s, evaporating temperature from 278.15 to 288.15 K, and inlet vapor quality from 0 to 0.2. Flow patterns were observed by using a high-speed video camera through a sight glass at the entrance of an evaporator. Results showed that with decreasing tube diameter, the local heat transfer coefficient starts decreasing at lower vapor quality. Although the effect of mass flux on the local heat transfer coefficient decreased with decreasing tube diameter, the effect of heat flux was strong in all three tubes. The measured pressure drop for the 3.1-mm-ID tube agreed well with that predicted by the Lockhart–Martinelli correlation, but when the inner tube diameter was 0.51 mm, the measured pressure drop agreed well with that predicted by the homogenous pressure drop model. With decreasing tube diameter, the flow inside a tube approached homogeneous flow. The contribution of forced convective evaporation to the boiling heat transfer decreases with decreasing the inner tube diameter.  相似文献   

12.
This article presents the condensation heat transfer and flow characteristics of R-134a flowing through corrugated tubes experimentally. The test section is a horizontal counter-flow concentric tube-in-tube heat exchanger 2000 mm in length. A smooth copper tube and corrugated copper tubes having inner diameters of 8.7 mm are used as an inner tube. The outer tube is made from smooth copper tube having an inner diameter of 21.2 mm. The corrugation pitches used in this study are 5.08, 6.35, and 8.46 mm. Similarly, the corrugation depths are 1, 1.25, and 1.5 mm, respectively. The test conditions are performed at saturation temperatures of 40–50 °C, heat fluxes of 5–10 kW/m2, mass fluxes of 200–700 kg/m2 s, and equivalent Reynolds numbers of 30000–120000. The Nusselt number and two-phase friction factor obtained from the corrugated tubes are significantly higher than those obtained from the smooth tube. Finally, new correlations are developed based on the present experimental data for predicting the Nusselt number and two-phase friction factor for corrugated tubes.  相似文献   

13.
The two-phase heat transfer coefficient and pressure drop of HFC-134a during evaporation inside a smooth helically coiled concentric tube-in-tube heat exchanger are experimentally investigated. The test section is a 5.786-m long helically coiled tube with refrigerant flowing in the inner tube and heating water flowing in the annulus. The inner tube is made from copper tubing of 9.52 mm outer diameter and 7.2 mm inner diameter. The heat exchanger is fabricated by bending a straight copper tube into a spiral coil. The diameter of coil is 305 mm. The test run are done at average saturated evaporating temperatures ranging between 10 and 20 °C. The mass fluxes are between 400 and 800 kg m−2 s−1 and the heat fluxes are between 5 and 10 kW m−2. The inlet quality of the refrigerant in the test section is calculated using the temperature and pressure obtained from the experiment. The pressure drop across the test section is directly measured by a differential pressure transducer. The effects of heat flux, mass flux and, evaporation temperature on the heat transfer coefficients and pressure drop are also discussed. The results from the present experiment are compared with those obtained from the straight tube reported in the literature. New correlations for the convection heat transfer coefficient and pressure drop are proposed for practical applications.  相似文献   

14.
An empirical setup has been established to study heat transfer and pressure drop characteristics during condensation of R600a, a hydrocarbon refrigerant, in a horizontal plain tube and different flattened channels. Round copper tubes of 8.7 mm I.D. were deformed into flattened channels with different interior heights of 6.7 mm, 5.2 mm and 3.1 mm as test sections. The test conditions include heat flux of 17 kw/m2, mass velocity in the range of 154.8–265.4 kg/m2s and vapor quality variation from approximately 10% to 80%. Results indicate that flattening the tubes causes significant enhancement of heat transfer coefficient which is also accompanied by simultaneous augmentation in flow pressure drop. Therefore, the overall performance of the flattened tubes with respect to heat transfer enhancement considering the pressure drop penalty is analyzed. It is concluded that the flattened tube with 5.2 mm inner height tube has the best overall performance. Due to the failure of pre-existing correlations for round tube condensation heat transfer, a new correlation is proposed which predicts 90% of the entire data within ± 17% error.  相似文献   

15.
This study investigates heat transfer and flow characteristics of water flowing through horizontal internally grooved tubes. The test tubes consisted of one smooth tube, one straight grooved tube, and four grooved tubes with different pitches. All test tubes were made from type 304 stainless steel. The length and inner diameter of the test tube were 2 m and 7.1 mm, respectively. Water was used as working fluid, heated by DC power supply under constant heat flux condition. The test runs were performed at average fluid temperature of 25 °C, heat flux of 3.5 kW/m2, and Reynolds number range from 4000 to 10,000. The effect of grooved pitch on heat transfer and pressure drop was also investigated. The performance of the grooved tubes was discussed in terms of thermal enhancement factor. The results showed that the thermal enhancement factor obtained from groove tubes is about 1.4 to 2.2 for a pitch of 0.5 in.; 1.1 to 1.3 for pitches of 8, 10, and 12 in., respectively; and 0.8 to 0.9 for a straight groove.  相似文献   

16.
Capillary-assisted evaporation is a typical heat transfer method in heat pipes which is characterized by high evaporation coefficient due to extremely thin liquid film. This paper introduces such a micro-scale heat transfer method into normal-scale applications. A series of enhanced heat transfer tubes with circumferential rectangular micro-grooves on the outside surfaces have been experimentally investigated. The aim is to investigate the influence of the tubes’ geometries and operating parameters on the evaporation heat transfer coefficients. In the experiment, the tested tubes are hold horizontally and the bottom surfaces are immersed into a pool of liquid. The heat is added to the thin liquid film inside the micro-grooves through the heating fluid flowing inside the tubes. The factors influencing the capillary-assisted evaporation performance, such as the immersion depth, evaporation pressure, superheating degree, etc. are considered. The experimental results have indicated that there is a positive correlation between the evaporation heat transfer coefficient and evaporation pressure, and negative for the superheating and immersion depth. For water, under the evaporation saturated temperature of 5.0 ± 0.1 °C, the superheating of 4.0 ± 0.1 °C and the dimensionless liquid level of 1/2, the film side evaporation heat transfer coefficients are 3100–3500 W/m2 K, which are equivalent to those of the falling film evaporator in LiBr–water absorption machine (2800–4500 W/m2 K [Y.Q. Dai, Y.Q. Zheng, LiBr–water Absorption Machine, first ed., Chinese National Defence Industry Press, Beijing, China, 1980.]).  相似文献   

17.
Experiments of diabatic two-phase pressure drops in flow boiling were conducted in four horizontal flattened smooth copper tubes with two different heights of 2 and 3 mm. The equivalent diameters of the flat tubes are 8.6, 7.17, 6.25, and 5.3 mm. The working fluids are R22 and R410A, respectively. The test conditions are: mass velocities from 150 to 500 kg/m2 s, heat fluxes from 6 to 40 kW/m2 and saturation temperature of 5 °C (reduced pressures pr are 0.12 for R22 and 0.19 for R410A). The experimental results of two-phase pressure drops are presented and analyzed. Furthermore, the predicted two-phase frictional pressure drops by the flow pattern based two-phase pressure drop model of Moreno Quibén and Thome [J. Moreno Quibén, J.R. Thome, Flow pattern based two-phase frictional pressure drop model for horizontal tubes, Part I: Diabatic and adiabatic experimental study, Int. J. Heat Fluid Flow 28 (2007) 1049–1059; J. Moreno Quibén, J.R. Thome, Flow pattern based two-phase frictional pressure drop model for horizontal tubes, Part II: New phenomenological model, Int. J. Heat Fluid Flow 28 (2007) 1060–1072] using the equivalent diameters were compared to the experimental data. The model, however, underpredicts the flattened tube two-phase frictional pressure drop data. Therefore, correction to the annular flow friction factor was proposed for the flattened tubes and now the method predicts 83.7% of the flattened tube pressure drop data within ±30%. The model is applicable to the flattened tubes in the test condition range in the present study. Extension of the model to other conditions should be verified with experimental data.  相似文献   

18.
Experiments were conducted in a cold model circulating fluidized bed having riser cross-sectional area of 100 mm × 100 mm, height of 4.8 m, bed temperature of 75 °C and superficial velocity of 8 m s?1. Local sand having average diameter of 231 μm was used as bed material. The experiments were conducted for three tube configurations: membrane tube, membrane tube with a longitudinal fin at the tube crest and membrane tube with two longitudinal fins at 45° on both sides of the tube crest. The results show that membrane tubes with one and two longitudinal fins have higher heat transfer than membrane tubes and the heat is mainly transferred in the combination portion of tube and membrane fins. In addition, the membrane tube has the highest heat transfer coefficient.  相似文献   

19.
Owing to the generalization problem, there aren't sufficient empirical correlations for two-phase flows. So as to investigate the thermal features of the two-phase flow in smooth and enhanced tubes, a suitable procedure of the models and correlations related with the heat transfer coefficients, friction factors and two-phase multipliers are needed because a significant variation in thermal properties happens during phase-change. Comparison of frictional pressure drop of R134a during flow boiling phenomena occurred in a smooth and 5 enhanced tubes with well-known empirical correlations were performed in this study. The apparatus has 0.85 m long double tube for vertical configuration as a test section that includes smooth and corrugated copper tubing having inner diameters of 0.0087 m, and the range of mass fluxes are between 200 and 400 kg m 2 s 1. The average vapor qualities vary from 0.14 to 0.86, and saturation pressure interval is between 4.5 and 5.7 bar. The mean boiling heat transfer coefficient of R134a is determined via energy balance in the test section. The estimation performance of 36 empirical correlations in literature proposed for convective boiling flows in smooth and corrugated tubes are evaluated by means of authors' database (350 data points for vertical tubes). Boiling trend lines have been plotted for the change of vapor quality, liquid phase Reynolds numbers with gas phase ones. In addition, the most successful correlations are confirmed their predictabilities for the vertical adjusted evaporator having smooth and corrugated tubes using the database of authors' earlier publications in open sources.  相似文献   

20.
Experimental heat transfer studies during evaporation of R-134a inside a corrugated tube have been carried out. The corrugated tube has been provided with different tube inclination angles of the direction of fluid flow from horizontal, α. The experiments were performed for seven different tube inclinations, α, in a range of − 90° to + 90° and four mass velocities of 46, 81, 110 and 136 kg m 2 s 1 for each tube inclination angle during evaporation of R-134a. Data analysis demonstrate that the tube inclination angle, α, affects the boiling heat transfer coefficient in a significant manner. The effect of tube inclination angle, α, on heat transfer coefficient, h, is more prominent at low vapor quality and mass velocity. In the low vapor quality region, the heat transfer coefficient, h, for the + 90° inclined tube is about 62% more than that of the − 90° inclined tube. The results also showed that at all mass velocities, the highest average heat transfer coefficient were achieved for α = + 90°. An empirical correlation has also been developed to predict the heat transfer coefficient during flow boiling inside a corrugated tube with different tube inclinations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号