首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of micro-voids on the tensile property of high-pressure die-cast AM60B and AZ91D magnesium alloy was investigated through systematic experimental approaches, with a constitutive prediction on the load carrying capacity and strain-related factors. The strain rate sensitivity was measured through the incremental strain rate change test, and the microporosity was measured from a comparison between the area of the micro-void and the cross-section area through the quantitative fractography on a fractured surface. The yield strengths of the AM60B and AZ91D alloys exhibit a linear dependence upon the variation of microporosity. In addition, the UTS and elongation of both alloys have a strong dependence upon the variation of microporosity, with an inverse parabolic relationship. The constitutive prediction exhibits is in good agreement with overall trend of the tensile properties of both alloys. From the constitutive prediction, it is confirmed that the differences in the UTS and elongation of both alloys arises from the divergence of the strain hardening ability, rather than from the strain rate sensitivity.  相似文献   

2.
The dependence of tensile properties on microporosity variation was investigated through a constitutive prediction based on previous experimental results of A356 aluminum alloy; the microporosity on a fractured surface was measured by means of quantitative fractography. The constitutive model, which takes into account the strain rate sensitivity, accurately predicts the tensile strength and elongation of the A356 alloy. In contrast, the results of a simple constitutive prediction that ignores the strain rate sensitivity diverge considerably from the overall trend of the experimental results. The significance of strain rate sensitivity on the constitutive prediction is more remarkably increased as the strain hardening exponent decreases or as the microporosity decreases.  相似文献   

3.
The variability in the tensile strength of as-cast AM60 and AZ91 alloys was investigated in terms of the defect susceptibility to the variation in grain size and microporosity. The microporosity was measured from the quantitative fractography analysis through scanning electron microscopy (SEM) observation on fractured surface after tensile test. The ultimate tensile strength (UTS) of both alloys can be characterized as a power law relationship to microporosity variation in terms of the defect susceptibility and maximum strength achievable in the defect-free condition. The defect susceptibility of tensile strength to microporosity variation is decreased remarkably with grain refinement. The defect susceptibility of AZ91 alloy to microporosity variation exhibits more sensitive dependence on the variation in grain size than AM60 alloy. Also, the dependence of UTS on the variation in grain size is described as a power law relationship for various levels of microporosity. The variation on effective void area fraction by the damage evolution of Mg17Al12 phase may introduce a practically significant decrease of load bearing capacity, less than by microporosity variation. The Hall-Petch relation of both alloys in the defect-free condition could be suggested as maximum values of friction stress and locking parameter.  相似文献   

4.
In the present study, the effect of microporosity on the tensile properties of as-cast AZ91D magnesium alloy was investigated through experimental observation and numerical prediction. The test specimens were fabricated by die-casting and gravity-casting. For gravity-casting, the inoculation and use of various metallic moulds were applied to obtain a wide range of microporosity. The deficiency of the interdendritic feeding of the liquid phase acted as a dominant mechanism on the formation of the micropores in the Mg?Al-alloys, rather than the evolution of hydrogen gas. Although tensile strength and elongation has a nonlinear and very intensive dependence upon microporosity, the yield strength appeared to have a linear relationship with microporosity. However, it was possible to quantitatively estimate the linear contribution of microporosity on the individual tensile property for a range of microporosity, which was below about 1%. The numerical prediction suggests that the effect of microporosity on fractured strength and elongation decreased as the strain hardening exponent increased. Furthermore, the shape and distribution of micropores may play a more dominant role than local plastic deformation on the tensile behavior of AZ91D alloy.  相似文献   

5.
1 Introduction Relative to aluminum matrix composites, magnesium-matrix composites are receiving interests increasingly in recent years due to their low densities and high specific properties. They are potentially attractive for the applications in aeros…  相似文献   

6.
在温度为100℃~525℃,应变速率为0.008s-1、0.013s-1条件下,采用恒应变速率法研究AA5083合金板的流变行为,以及流变应力、变形温度与应变速率之间的关系。结果表明,在该条件下,AA5083合金受应变速率硬化与应变硬化共同作用;其应变速率敏感性指数随温度的升高逐渐增大,应变硬化指数随温度的升高逐渐减弱至零,而后略有增大。建立了材料基于温度变化的修正Fields-Backofen本构模型,其值与实验值吻合良好。  相似文献   

7.
Dry sliding tests were performed on as-cast AZ31 alloy using a pin-on-disc configuration. Coefficient of friction and wear rate were measured within a load range of 5-360 N at a sliding velocity of 0.785 m/s. Worn surface morphologies were examined using scanning electron microscopy. Five wear mechanisms, namely abrasion, oxidation, delamination, thermal softening, and melting, have been observed. Surface hardness, subsurface plastic strain, worn surface temperature, and cross-sectional optical microscopy were used to characterize hardness change, plastic deformation, and the microstructure evolution in subsurface. The results illustrate the correlation between the wear behavior and evolution of microstructure and hardness in subsurface, and reveal that in the load range of 5-120 N, surface oxidation and hardening originating from large plastic deformation play an important role in maintaining the mild wear, and softening originating from dynamic recrystallization in subsurface and surface melting are responsible for the severe wear in the load range of 120-360 N.  相似文献   

8.
基于变形温度250~400 ℃和应变速率0.001~1 s-1条件下的铸态AZ80镁合金的热压缩试验数据,建立了基于应力位错关系和动态再结晶动力学的物理基本构模型以及前馈反向传播算法的人工神经网络(ANN)模型来预测AZ80镁合金的热变形行为。采用相关系数(R)、平均绝对相对误差(AARE)、相对误差(RE)3种统计学指标来验证2种模型的预测精度。结果表明,2种模型均可以准确预测AZ80镁合金的热变形行为。其中,ANN模型预测的应力值与实验数据更为吻合,其R和AARE分别为0.9991和2.02%,而物理基本构模型预测的R和AARE分别为0.9936和4.52%。ANN模型较好的预测能力归功于它擅长处理复杂的非线性关系,而物理基本构模型的预测能力是基于模型具有一定的物理意义,模型参数的确定充分考虑了热变形过程中的加工硬化(WH)、动态回复(DRV)和动态再结晶(DRX)的热动力学机制。最后,对这2种本构模型的优缺点及适用范围进行了比较讨论。  相似文献   

9.
基于弹塑性自洽模型的AZ31镁合金轧制过程的织构模拟   总被引:1,自引:0,他引:1  
为了更好地研究镁合金轧制过程的织构演变,对商用有限元软件ABAQUS/Explicit的用户材料接口VUMAT做二次开发,实现晶体塑性力学和有限元方法的耦合。对于单个晶粒,通过相关模型计算每个增量步的塑性应变增量,Voce硬化模型计算应变硬化。由于变形机制的不同,分别计算滑移和孪晶引起的晶格旋转。采用弹塑性自洽模型计算单晶体和多晶体之间的联系。应用编制的程序,分别模拟AZ31板材和AZ31铸件的轧制过程。结果表明,该程序能够较好地预测轧制过程的织构演化。  相似文献   

10.
In the present study, the fracture behavior of Mg17Al12 precipitate and the effect of dendrite arm spacing (DAS) on tensile properties of commercial as-cast AZ91D alloy were discussed. In order to obtain a wide range of DAS, the as-cast specimens were fabricated by various casting processes. With gravity-casting, the inoculation and varous molds were utilized, and the solidification rates of melts were measured at four positions of the cone-type mold. The empirical equation between the solidification rate and DAS was found to the [DAS=82.2εavg. −0.41]. Although the DAS as well as the grain size showed a Hall-Petch relationship with yield strength, the UTS and elongation indicated a parabolic relationship with respect to the variation of DAS. The fracture behavior of the as-cast AZ91D alloy was composed of three stages: (1) plasticity-induced crack initiation at the precipitate by matrix deformation, (2) crack growth through concentration of plastic deformation at the interface between the precipitate and matrix, and (3) agglomeration of cracks formed around the precipitate. The plasticity-induced crack is formed through severe deformation of the α-Mg matrix, and the size of the crack in the precipitate is limited by the thickness of the precipitate. Since the stress intensity level around the crack is lowered with the average diameter of the precipitate, the tensile properties of the ascast alloy could be enhanced by the decrease of the average diameter of the precipitate.  相似文献   

11.
An experimental Mg97Zn1Y2(molar fraction,%)alloy was produced by rolling the as-cast alloy.The microstructure of the alloy is composed of theα-Mg(also marked as 2H-Mg with reference to long-period stacking structure according to hexagonal close packed structure)and long-period stacking(LPS)phase.Tensile tests of Mg97Zn1Y2 alloy in comparison with pure Mg were conducted.The fracture morphologies of the tensile specimens were characterized and the microstructures near fracture surface were observed.The results show that the rolled Mg97Zn1Y2 alloy shows a mixed fracture mode including dimples indicating a ductile fracture pattern and a small fraction of cleavage planes indicating a brittle fracture pattern,which is different from the single brittle fracture of the as-cast alloy.In addition,the plastic deformation is mainly from dislocations induced strain with small strengthening effect during plastic deformation in the as-cast Mg97Zn1Y2 alloy,and the strain hardening rate is similar to that of the as-cast pure magnesium.The deformation mechanism of Mg97Zn1Y2 alloy is different from that of the pure magnesium according to a metallographical observation that whether twins are found or not.The strengthening effect hardly exists in the rolled Mg97Zn1Y2 alloy under the same dislocations induced strain,which is different from that of the as-cast alloy with moderate strengthening effect.  相似文献   

12.
通过在不同温度下单向拉伸实验,分别沿轧向、45°方向和横向对AZ31镁合金轧制板材的冲压性能进行了研究.结果表明:随着变形温度的升高,板材抗拉强度和屈服强度下降,断裂伸长率提高,应变硬化指数和塑性应变比降低.拉伸性能得到改善;温度高于200℃时,板材的冲压性能得到改善,其屈强比为0.876,应变硬化指数为0.158,塑性应变比为1.307.  相似文献   

13.
研究了铸态和挤压态AZ91镁合金的室温应变疲劳行为。结果表明,铸态镁合金表现为循环应变硬化,而挤压态镁合金可呈现循环应变硬化、软化或循环稳定。与此同时,对两种状态的AZ91镁合金的应变寿命行为和循环应力-应变行为进行了分析测试,确定了相应的室温应变疲劳参数。此外,利用扫描电子显微镜观察分析了铸态和挤压态AZ91镁合金的疲劳裂纹萌生和扩展行为。  相似文献   

14.
利用固相再生技术回收利用AZ91D镁合金屑,具体工艺为先冷压再热挤。结果表明:制备的AZ91D镁合金具有较好的力学性能且晶粒明显细化。在热挤出过程中发生了动态再结晶,且动态再结晶组织受到热挤温度和应变速率的影响,在300-350 °C下基面滑移和孪晶协调变形导致动态再结晶晶粒产生,形成"项链"组织;在 350-400 °C下位错的交滑移控制动态再结晶形核;高于400 °C时位错攀移控制了整个动态再结晶过程,形成均匀的再结晶组织。随着应变速率增加AZ91D镁合金力学性能增大,改善了材料的力学性能,但应变速率过大,制备试样表面出现裂纹,影响材料的力学性能。  相似文献   

15.
A method for recycling AZ91D magnesium alloy chips by solid-state recycling was studied. The experiments were carried out adopting the cold-press pressure and hot extrusion. The results indicate that recycled specimens of AZ91D magnesium alloy present better mechanical properties and consist of fine grains due to dynamic recrystallization. The mechanisms of dynamic recrystallization depend on plastic deformation process and change with the deformation temperature. At 300-350 °C, the deformation mechanisms are associated with the operation of basal slip and twinning, and the “necklace” structures are formed. At 350-400 °C, the cross slip results in the formation of new grains and grain refinement. At above 400 °C, the dynamic recrystallization mechanisms are controlled by dislocation climb, and recrystallized grains are homogeneous. The tensile strength of recycled specimens increases with the increase of the strain rate. When the strain rate is overhigh, the cracks and fractures in the surface appear and affect the tensile strength of recycled specimens.  相似文献   

16.
挤压比为4:1,将铸态AZ91镁合金分别在250,300和350℃下进行挤压,随后进行析出硬化处理(T6)。经过热挤压和析出硬化处理后,铸态AZ91镁合金中粗大的和偏析Mg17Al12析出相被细化并均匀分布在α-镁基体中。在不同的挤压温度下合金中发生了部分或全部动态再结晶。经挤压后,该合金的极限抗拉强度从铸态的190MPa增加到570MPa。AZ91镁合金的时效硬化特征与晶粒尺寸有关。在250、300和350℃下以4:1的挤压比挤压该合金后,获得峰值硬度的时效时间分别为35、30和20h。SEM观察到在AZ91基体中存在均匀细小的Mg17Al12析出相。  相似文献   

17.
采用UTM5000电子万能拉伸试验机,在变形温度573~648K和应变速率0.001~0.1s-1条件下对2060-T8铝锂合金进行等温恒应变速率拉伸试验,得到其在变形过程中的真应力-真应变曲线,建立了基于应变补偿和修正项的温热变形本构方程。通过扫描电子显微镜(SEM)分析拉伸断口,对2060-T8铝锂合金的温热变形行为进行研究。结果表明:2060-T8铝锂合金对变形温度和应变速率具有较高的敏感性,流变应力曲线呈现出应变硬化和流变软化的特征,随着变形温度的升高和应变速率的降低,稳态流变特征逐渐消失,其在温热变形条件下的断裂形式为韧性断裂。修正的本构模型与实验值吻合度较高,可以为2060-T8铝锂合金温热变形的有限元模拟提供前提条件。  相似文献   

18.
The aim of the present study was to investigate the dependence of the high cycle fatigue property on the microporosity variation of a low-pressure die-cast A356 alloy. Also, it aimed to describe quantitatively the relationship between the fatigue property and monotonic tensile strength using modified Basquin’s equation which takes into account the microporosity variation. The fatigue life of the A356 alloy can be described by an exponential dependence on the variation of the fractographic porosity, in terms of the modified Basquin’s equation which is composed of the defect susceptibility of fatigue life to microporosity variation and the maximum tensile strength achievable in the defect-free condition. Using a modified form of Basquin’s equation, the maximum values of the fatigue strength coefficient and exponent in the defect-free condition are 341.5 MPa and ?0.076, respectively, even though the nominal values of fatigue strength coefficient and exponent without consideration of microporosity variation are 237.6MPa and ?0.048, respectively. Also, the difference between the maximum tensile strength and the fatigue strength coefficient on modified Basquin’s equation is about 120MPa, and it arises from variation in the deformation behavior due to the difference of loading condition between the monotonic and cyclic test modes such as the strain rate, Bauschinger effect, cyclic work hardening and damage accumulation on loading condition.  相似文献   

19.
AZ80镁合金变形特性及管材挤压数值模拟研究   总被引:1,自引:0,他引:1  
利用Gleeble热模拟机研究了AZ80合金的高温变形特性。结果表明,流变应力取决于变形温度和变形速率。当应变速率一定时,流变应力随变形温度的升高而降低;当温度一定时,流变应力随着应变速率的升高而增大。根据AZ80镁合金真应力-真应变曲线,建立了其流变应力模型。采用刚塑性有限元法对AZ80镁合金管材挤压过程进行热力耦合数值模拟,并分析了高温挤压成形过程中变形力及金属流动规律,着重探讨了变形温度和挤压速度等挤压工艺参数对挤压力、应变场以及应力场的分布及变化情况的影响。模拟的结果为AZ80镁合金管材挤压工艺参数的制定、优化提供了科学依据。  相似文献   

20.
AZ80镁合金热流变行为的Rosserd型本构描述   总被引:1,自引:1,他引:0  
利用热物理模拟机Gleeble1500进行多组圆柱试样的热物理模拟压缩试验,试验温度为250~400℃,应变速率为0.01~10s-1。应用多元线性回归方法分析计算了AZ80镁合金唯象本构模型所需的一组系数,获得了能够较精确表示AZ80镁合金材料的流动应力与温度、应变速率和应变之间关系的Rosserd本构模型,为塑性成形模拟提供了所需的基本模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号